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Abstract 
 
In this Master thesis a model is presented which was developed to simulate 

the increase of self-consumption of photovoltaic (PV)-power by storing 

energy in electric vehicles (EVs) using smart grid technology for a case 

study in the residential sector. The case study consists of a micro-grid 

including three PV-installations, an office, internet servers, three to five 

households and two to five EVs in the area of Lombok in Utrecht, the 

Netherlands. Four scenarios that differ in the amount of kWp for the PV-

installations, the number of households and the number of EVs have been 

constructed. Three different possible smart grid control algorithms are 

presented that manage the (dis)charging profile of multiple EVs, either in 

real-time or using linear optimisation with predictions for PV-power and 

electricity demand. The control algorithms are simulated for a year for all 

scenarios using data for PV-power and electricity demand from the 

Netherlands and are evaluated for PV-power self-consumption and relative 

demand peak reduction. Furthermore a sensitivity analysis is performed in 

order to test the results for changes in input data and model structure. 

Results show that smart storage of electricity in EVs can increase self-

consumption with 15% to 35%, reduce energy send to the main grid with 5 

to 8 MWh per year and increase relative peak reduction with 55% to 75%, 

depending on which control algorithm and scenario is chosen. Furthermore, 

in a comparison of scenarios it is shown that installing additional solar power 

is not advisable when evaluating for self-consumption, because the 

simulations show that additional solar power will not be used within the 

micro-grid. Based on the results it can be concluded that designing an EV-

charging control algorithm based on linear programming is the best way to 

increase self-consumption in this case study, because it scores best on self-

consumption and relative peak reduction and is least sensitive for the 

aspects researched in the sensitivity analysis. 
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1. Introduction 
1.1	
  Background	
  
 
The worldwide increase of electricity demand poses major challenges in the 

energy sector. Since 1971, the final consumption of electricity has increased 

four-fold to 64 EJ in 2010, 18% of total final energy consumption of 360 EJ 

(IEA, 2012) and is expected to further increase due to growing global 

population and welfare. Issues related to this development include 

availability, reliability, cost and environmental issues such as global warming 

and depletion of resources. While the industrial sector has the highest 

demand for electricity, demand in the residential sector shows the highest 

increase in Europe, 10.8 % for the EU-25 Member States1 in the period 

1999-2004 (Bertoldi and Atanusiu, 2007). It is therefore an important sector 

for changes in the electricity provision and distribution.  

 
In the Netherlands the residential sector makes up 23% of the final 

consumption of electricity (IEA, 2013a). Renewable energy sources (RES) 

such as photovoltaic (PV) or wind energy can contribute to the solution of 

the mentioned issues. In the Netherlands only 4.33% of total energy use 

and 2.05% of total electricity use in 2012 originated from RES (CBS, 2013), 

but the government wants to stimulate RES such that 16% of energy 

production in 2020 is from RES (Rijksoverheid, 2013). 

 

Another important sector contributing to global warming is the transport 

sector. Globally the contributions of the transport sector to greenhouse gas 

(GHG)-emissions amounted to nearly 20% in 2009 (Hoen et al., 2009). 

According to the European Federation for Transport and Environment (2011) 

CO2 emissions from the European transport sector have increased by 29% 

since 1990. In the Netherlands the final consumption of the transport sector 

was 11,492 ktoe in 2009 of which 93% was oil products (IEA, 2013b).  

 

Electric vehicles (EVs) are a promising technology for reducing the 

environmental burden of road transport (Essen et al. 2011). Based on three 

scenarios varying market uptake Essen et al. (2011) concluded that 

increased market share of EVs achieve overall passenger car CO2 emission 

                                   
1 European Union Member States per May 1st 2004: Austria, Belgium, Cyprus, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, 
Malta, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom (CBS, 
2013) 

10



	
    

reductions of between 4% and 9% for the EU in 2030, even when additional 

future electricity supply is generated from gas and coal. 

 

In the Netherlands there were 10049 EVs and 5174 public or semi-public 

loading stations in June 2013 (Agentschap NL, 2013). This is just 0.001% of 

the total car fleet in the Netherlands but an increase of 36% compared to 

December 2012 and 506% compared to December 2011 is showing market 

uptake. If this trend continues EVs can contribute substantially to reducing 

GHG-emissions in the Netherlands, but it also creates another issue because 

electricity demand will increase even further. Also, the typical loading 

pattern coincides with that of households, which is highest in the morning 

and the evening (see figure 1.1), thus it contributes to existing peaks in 

electricity demand in the residential sector. 

 

 
Figure 1.1 Loading profile for electric vehicles. Source:  
http://www.e-laad.nl/uploads/files/nieuws-2012/Oktober/grafiek2.jpg 

PV technology can be part of the solution to problems relating with 

electricity and transport: there are no emissions of greenhouse gasses 

during electricity production, and PV technology also fits in a trend towards 

a more decentralised and independent energy system (Mulder et al., 2010), 

so called distributed generation (DG). If PV-electricity is used to charge EVs, 

transport with EVs will cause even less or zero direct GHG emissions.  

 

An important advantage of PV for the residential sector is its scalability; 

even single households can use this technology. However, the mismatch of 

11



	
    

PV production and the load curve for domestic use poses a challenge. PV 

installations produce most electricity around noon, when solar insulation is 

high, while electricity demand is usually low then. In addition solar power 

supply is variable on a smaller time scale due to variations in cloud 

coverage.  

 

Strategies to deal with these issues are for instance demand response (DR) 

and electricity storage (Castillo-Cagigal et al., 2011a); in their paper DR is 

defined as shifting load demand in order to achieve a set goal. Optimisation 

goals are for instance are peak-shifting (flattening load demand curve) or 

increasing self-consumption (consumption of locally produced electricity 

behind the meter). This can be done either by consumers themselves, for 

instance by using certain appliances at optimal times, or using a smart grid; 

a grid that includes an intelligent control system that can be programmed to 

perform energy management tasks.  

 

Smart grid technology combines the traditional electricity grid or a micro-

grid (a local, low-voltage distribution system) with information and 

communication technologies in order to add ‘intelligence’ to the grid 

(Verbong et al., 2012). The main characteristics of smart grids according to 

the United States Department of Energy (2009) are that it a) enables 

informed participation by customers, b) accommodates all generation and 

storage options, c) enables new products, services and markets, d) provides 

the power quality for the range of needs, e) optimises asset utilisation and 

operating efficiently, f) self-heals and g) resists attack. 
 

In a smart grid system a electricity storage can contribute to peak-shifting 

(see figure 1.2) or, when there is a local PV-installation, increasing self-

consumption of PV-power. Disadvantages are that storage is expensive and 

not environment-friendly (Mulder et al., 2010). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 Illustration of peak-shifting using energy storage. Source: 
http://greensmith.us.com/wp-content/uploads/2012/01/Peak-Shifting3.jpg 
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The main power grid can be used as virtual storage for electricity. When 

supply is higher than demand, electricity can be fed back and sold to the 

grid and vice versa. This is an interesting option, because in that case an 

expensive battery is not needed. Furthermore, net metering, the current 

policy regarding selling PV-power in the Netherlands, makes this financially 

attractive. However, with increasing numbers of PV-installations this 

strategy can become problematic, because of the increased power transport 

over the electricity grid. This will cause the need for more investments in 

the grid in order to prevent overloads. In response to this threat, several 

countries in Europe have started implementing policies to stimulate self-

consumption (Castillo-Cagigal et al., 2011a). Financial regulations 

discouraging selling electricity to the grid can reduce the pay back time and 

therefore attractiveness of PV-installations significantly.  

 

In order to solve these issues options to improve self-consumption must be 

investigated. Energy could also be stored in EV-batteries. This way EVs can 

increase self-consumption and contribute to peak-shifting instead of causing 

extra peaks.  Furthermore, by using PV-electricity to power EVs GHG 

emissions for transportation are reduced.  

1.2	
  Case	
  study:	
  LomboXnet	
  
 
LomboXnet is an internet company that provides a glass fibre internet 

connection to about 2500 people in the area of Lombok in Utrecht, the 

Netherlands. LomboXnet has the ambition to run their activities on locally 

produced solar power and provides solar powered electricity to several 

houses in the neighbourhood. Currently there is a micro-grid available that 

includes three solar panel installations, three houses, two EVs and two EV 

loading stations which are all connected to LomboXnet’s office called the 

Parkhuis. There are PV-installations placed on the Parkhuis and two nearby 

schools the Parkschool and the Christelijk Gymnasium Utrecht (CGU). 

Around the office there are two EVs, a Tesla Model S (from now on referred 

to as Tesla) and a Nissan Leaf (from now referred to as Leaf), and two EV 

charging stations, one for the Tesla and one for the Leaf including a public 

connection. The Leaf can be rented and the Tesla is for private use. A map 

of Lombok and the mentioned buildings is presented in figure 1.3. 

 

The batteries of the EVs could also be used to store locally produced PV-

electricity. In order to make efficient use of the supplied PV-power, the 

current micro-grid needs to incorporate smart grid technology in order to 

use the produced electricity, using the EVs as storage. In this research, 

13



	
    

control algorithms for a smart grid are developed for this project and 

evaluated using model simulations, contributing to the goal of setting up an 

efficient decentralised energy system. 

 

 
Figure 1.3 Map of Lombok with indications of locations of the Parkschool, CGU and the loading station (which 
is near the Parkhuis) (Van den Berg et al., 2013) 

1.3	
  Previous	
  research	
  
 
In recent years several researches about options to improve PV self-

consumption have been carried out. In a study by Widén et al. (2009) a 

method to evaluate PV array orientation, demand side management (DSM) 

and electricity storage for load matching was proposed. Based on high-

latitude data it was concluded that storage is the most effective solution for 

high penetration levels, while DSM is more effective at low overproduction 

levels. Mulder et al. (2010) have set up calculation rules to dimension 

storage capacity, based on measurements of seven households in Belgium. 

Castillo-Cagigal et al. (2011a,b) have modelled and experimented with 

combinations of storage and active DSM. Their research has shown that this 

combination can considerably improve self-consumption.  

 

The European Commission Directorate-General For Energy have stated that 

higher levels of storage are required for grid flexibility and grid stability and 

smart grids and smart storage are required for developing smart cities, a 

key energy policy goal (EC, 2013). Verbong et al. (2012) concluded that 

relevant stakeholders in the Netherlands generally perceive smart grids as a 

solution to challenges in grid management and sustainable energy supply. It 

was also concluded that in order to introduce smart grids on a larger scale 
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research should focus more on the domestication of the technology as 

opposed to the technical and economical aspects of smart grids. Essen et al. 

(2011) have stated that controlled charging of EVs allows a higher market 

share of EVs because it prevents local electricity overload. However, in their 

report they also concluded that the potential of load balancing with EVs 

seems limited due to the limited total storage capacity of EVs, other more 

cost-effective storage solutions and concerns regarding effect on battery life. 

 

An important topic for smart grids is how they can help with increasing grid 

stability in a hybrid RES electricity distribution system; a micro-grid that 

includes RES but also has a connection to the main grid. Examples of 

proposed control algorithms with such an optimisation objective are 

Mohamed and Mohammed (2012), who presented a control algorithm based 

on fuzzy logic, Sechilariu et al. (2013), who proposed a real-time control 

system for a micro-grid, Silva et al. (2012), who proposed a Genetic 

Optimisation method using load and power predictions, Soares et al. (2012), 

who proposed a new  methodology called Signaled Swarm Particle 

Optimisation, and Tanaka et al. (2011), who used mathematical 

optimisation to minimise interconnection point power flow fluctuations. In all 

these papers it was concluded that smart grid technology can significantly 

improve grid stability and cost of electricity distribution system which 

includes RES. 

 

Furthermore, several researches on control algorithms for EV charging 

focusing on grid stability have been carried out. Van den Akker et al. (2012) 

proposed a greedy strategy for EV charging for a single household to reduce 

network losses. González Vayá and Andersson (2012) proposed a 

centralised and decentralised Optimal Power Flow scheme for EV-fleet 

charging. Khayyam et al. (2012) presented a load controller using fuzzy 

logic for a vehicle-to-grid system that showed that vehicle electrification 

could play a role in increasing grid stability. Shuaib et al. (2012) simulated 

the effect of priority-controlled charging scheme to show that priority based 

schemes can be used to regulate EV fleet charging.  

 

Smart grids can also be approached from the perspective of households. 

Guo et al. (2012) proposed a stochastic optimisation method to minimise 

expected electricity costs of a residential consumer with real-time pricing in 

a micro-grid consisting of load, RES and electricity storage. They showed 

that their approach is effective in a real-time system eliminating the need 

for  future knowledge on related stochastic models. 
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Summarising, recent research on smart grids have a broad scope of 

applications, focus on different optimisation objectives and use a wide range 

of mathematical optimisation techniques to design control algorithms. There 

have been several researches about the use of smart grid and storage to 

increase PV self-consumption in the residential sector that have shown 

promising results. Verbong et al. (2012) concluded for the Netherlands 

specifically that smart grids are seen as a possible solution for power supply 

issues and the focus should be on implementing the technology in 

households. 

1.4	
  Problem	
  definition	
  
 
In figure 1.4 an overview of the current electricity distribution system of 

LomboXnet is presented. The solar panel installations on the roof of the 

Parkschool and the Christelijk Gymnasium Utrecht (CGU) provide electricity 

to the office building of LomboXnet. The power is then divided between the 

office building, the EV loading station and the houses connected to the local 

grid. Because it is connected to houses, the load curve is typical for the 

residential sector; supply and demand do not match well. 

 

If supply is lower than demand, electricity is purchased from the grid. If 

supply is higher than demand, electricity is sold to the grid. However, for 

Stedin, the distribution network operator, more DG sources and EVs will 

mean that new investments in the grid must be made, which is not 

desirable. It is beneficial for the distribution network operator that  

LomboXnet’s self-consumption increases. Furthermore, if the electricity sold 

to the grid exceeds 5000 kWh per year, the supplier can buy the electricity 

for a ‘reasonable price’ (Elektriciteitswet 1998, article 31c) instead of using 

net metering. This significantly reduces the payback time of the solar 

panels. Therefore LomboXnet wants to investigate possibilities to increase 

self-consumption. However, proposed legislation (EK 33.493 A) changing 

the 5000 kWh limit to ‘unlimited’ per January 1st 2014 will most likely be 

accepted by the Dutch parliament (Simons, 2013). 

 
The goal of this research is to investigate the potential of combining smart 

grid technology with electricity storage in EVs for increasing self-

consumption. This will be done by creating a model of the current micro-grid 

and simulating the effect on self-consumption of different possible 

expansions of this grid including smart grid technology. 
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Figure 1.4 Schematic representation of the electricity distribution system nationally and at LomboXnet (Adapted from Van den Berg et al. 2013) 
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1.5	
  Research	
  objective	
  and	
  questions	
  
 
The main research objective is to develop and evaluate algorithms for a smart 

grid system that can increase self-consumption of PV-power by storing electricity 

in EVs in the residential sector, in this case LomboXnet, while meeting the 

demands posed by the use of the EVs. Results from the study can be used for 

developing strategies to increase use of PV technology in the residential sector. 

The research objective results in research question RQ1: 

 

RQ1 How and by how much can storage of electricity in EVs in combination with 

smart grid technology contribute to increasing self-consumption of PV-

power for the residential sector in the case of LomboXnet? 

 
In order to answer RQ1 first a baseline situation to compare the effects of the 

designed system to must be established. This is the current situation at 

LomboXnet and is investigated with RQ2 t/m RQ5: 

 
RQ2 What are the characteristics of the power supply from the PV-installations? 

 

RQ3 What is the typical load demand curve for the office of LomboXnet? 

 

RQ4 What is the typical load demand curve of the houses connected to the PV-

system? 

 

RQ5 What are the technical specifications of the EVs and how will they be used? 

 

When the baseline is established the performance of systems with storage and 

smart grid technology can be evaluated (RQ6 and RQ7). 

 
RQ6 How and by how much can charging the EVs at LomboXnet using smart 

grid technology contribute to increasing self-consumption of PV-power? 

 
RQ7 How and by how much can storage of electricity in the EVs at LomboXnet 

using smart grid technology contribute to increasing self-consumption of 

PV-power? 

1.6	
  System	
  boundaries	
  
 
This research focuses on the physical side of energy management in the context 

of a case study, the research question is dealt with as a mathematical 

optimisation problem for self-consumption. The research is carried out by data 
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collection and analysis, analysing the electricity distribution in place, writing 

algorithms for a model and running simulations. Not included are the finances of 

the project.  

 

Because this is a case study, boundaries are determined by the situation at 

LomboXnet. The available data for PV, system and technologies are all bound to 

the case. Results will apply to locations with similar solar insulation and cloud 

coverage as in the Netherlands. 

 

Effects of smart metering on behavioural changes of participants will not be 

taken into account. In order to do research for this aspect of demand side 

management methods such as interviews and surveys must be used, which is 

not considered within the scope of this research. Also, the goal of the research is 

to investigate the effect of storing electricity in EVs on self-consumption. Other 

so-called controllable loads (such as washing machines or refrigerators) are not 

taken into account. 

1.7	
  Structure	
  of	
  document	
  
 
In chapter 2 the research method is explained. It includes a definition of the 

analysis model, the model of the micro-grid at LomboXnet, the method for data 

collection, the algorithms used to simulate the smart grid control systems, the 

performance indicators and the method for the sensitivity analysis. In chapter 3 

the collected data is presented and analysed and it is explained how the data will 

be used for the simulations. This chapter contains the answers to RQ2 t/m RQ5. 

In chapter 4 the results of the simulations are presented. The results include 

evaluations of the simulations of the algorithms, sensitivity analysis and a 

comparison and interpretation of the results. The chapter contains the answers 

to RQ6 and RQ7. Chapter 5 contains the discussion of the results and chapter 6 

contains the main conclusions, the answer to the research question and further 

recommendations. 
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2. Methodology 
2.1	
  Analysis	
  model	
  
 
The potential of increasing self-consumption by storing PV energy in EVs is 

investigated by performing computer simulations and evaluating the results on 

performance indicators and sensitivity analyses. In this case study the micro-grid 

at LomboXnet is the basis of the model. The basic input is the total electricity 

demand per time step, the supplied PV-power per time step and the technical 

specifications and expected use (average trip duration, distance and number of 

trips per week) of the EVs. The data for load demand of the Parkhuis and PV-

power are measured at LomboXnet. The data for household load curves are 

based on measurements from Liander in 2008 as provided by Claessen who used 

the dataset for his research (Claessen, 2012).  

 

The inputs are used to construct scenarios for the electricity demand, PV-power 

and number of EVs. These scenarios relate to the current situation at LomboXnet 

and realistic future additions to the micro-grid. The scenarios are the input for 

simulations of the energy flows in the micro-grid with different control systems 

for the EVs for different periods of a year; the results of these simulations are 

loading patterns for the EVs. These are evaluated using performance indicators 

and sensitivity analyses. The main objectives for the system are increasing self-

consumption and peak shaving. The analysis is the basis for conclusions about 

the potential of the system and further recommendations. An overview of the 

analysis model is presented in figure 2.1. 

2.2	
  LomboXnet	
  micro-­‐grid	
  model	
  
 
In figure 2.2 a schematic representation of the model of the micro-grid at 

LomboXnet is presented. The five main components of the micro-grid are the PV 

installations, the Parkhuis, uncontrollable load, EVs and loading stations and the 

connection to the main grid. Red arrows and red cursive text indicates that that 

component is not (yet) available at LomboXnet at the time of writing, including 

three EVs; one Leaf and two Ford Focus Electric EVs (from now on referred to as 

Focus). The extra solar panels CGU are expected in the second quarter of 2014, 

the extra households, EVs and loading station are expected to be available in 

January 2014 and discharging of EVs is expected to be operational at the end of 

the first quarter of 2014. 
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Figure 2.1 Analysis model 

	
  

	
  
Figure 2.2 Model of micro-grid at LomboXnet. Red and cursive indicates that the component is not yet in place 
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2.2.1	
  Parkhuis	
  
 
The Parkhuis is the centre of the micro-grid where the PV-power is sent to, the 

power is divided between loads by a device called HERMAN (Herman de 

zonnestroom verdeler, 2013), the meter Net2Grid (Net2Grid, 2013) and the 

connection with the main grid is. In the model, the priority where to use PV-

power is first the uncontrollable load, then the EVs and then the main grid. The 

uncontrollable load has priority over the EVs because if one stores electricity in a 

battery and takes it out later one loses electricity twice with conversion efficiency 

and a heavier use of the battery will result in a shorter battery lifetime. However, 

when energy is needed for a planned trip the EV is  considered part of the 

uncontrollable load and has the same priority as the rest of the uncontrollable 

loads. 

2.2.2	
  PV	
  
 
There are three PV-installations with a total installed amount of 31 kWp. The 

locations of the installations are indicated in figure 1.3. PV-power must be used, 

stored or sold at the same moment it is produced. This can either be by 

uncontrollable load, EVs or the main grid. 

 

Data for PV-power profiles is directly measured from the installations and can be 

accessed online. The data is based on measurements after power transformation, 

so efficiency losses of power transformation are included in the data. The data is 

available from July 7th 2011 to December 31st 2012 for the installation at the 

Parkschool and from October 1st to December 31st 2012 for the installation at the 

CGU.  

2.2.3	
  Uncontrollable	
  load	
  
 
The uncontrollable load consists of the electricity demand for the Parkhuis, the 

LomboXnet servers and connected households; for these factors DR is not 

applied. Currently there are three households connected and in the future this is 

possibly expanded with two. In reality, the households have their own connection 

to the main grid. In the model this is not included but load demand is the 

aggregated total of all uncontrollable loads. This is not a problem since the 

objective is to increase self-consumption and therefore minimise the excess PV-

power which is sold to the grid. The amount of electricity bought from the grid 

for LomboXnet, which the model calculates for the whole system and not just 

LomboXnet, is not of particular interest for this research. Also, the households 

have priority over the EV as explained earlier. In the model of the micro-grid 

22



	
    

electricity demand must always be met. Electricity is provided either by PV-

power, the main grid or electricity extracted from the EVs. 

 

The electricity demand for the Parkhuis including servers was measured from 

October 29th to November 8th 2012. The data for the electricity demand of the 

households comes from measurements of 700 houses for a week by Liander in 

2008. Furthermore, factors for weekly variations of electricity consumption for a 

year are used based on measurements of average electricity consumption for a 

different set of houses taken by Liander in 2007. Based on these measurements 

a profile for a year is constructed for both the Parkhuis and the households. For 

the households,. the load profiles are repeated in order to cover a year and 

multiplied with the factors for weekly variations Because the only the aggregated 

load demand was measured it is not possible to take the changing of the shape 

of demand profiles throughout the year into account. This decreases the 

accuracy of the yearly profile, in the discussion (chapter 5) this is further 

expanded upon. For the Parkhuis the data was used to construct an electricity 

demand profile with mean energy use and standard deviation for each hour. In 

order to construct load profiles for the simulations random values within the 

standard deviations are used, varying throughout the year with the factors for 

weekly variations.  

2.2.4	
  EVs	
  and	
  loading	
  stations	
  
 
The EVs are the controllable load (and supply) and calculating their loading 

pattern per time step is the main result from the simulations. Since PV and 

uncontrollable load are fixed, the EVs are the only factor that contribute to 

increased self-consumption. In the model, the batteries of the EVs can be used 

to store (and extract) electricity. This is done only if there is excess PV-power 

(more PV-power than uncontrollable load). However, the EVs are also used to 

make trips. This means that during trips there is no power exchange with the EV 

and the micro-grid and that the energy needed for making trips is added to the 

total electricity demand.  

 

Technical data concerning the EVs is retrieved from manufacturers and the 

United States Environmental Protection Agency (EPA, 2013). The needed factors 

for the model are the maximum loading/unloading power, energy use, battery 

capacity and power transport efficiency. Furthermore, an estimate of how the 

EVs will be used (average trip duration, distance and number of trips per week) 

is needed. These factors are used in a function which produces random trip 

schedules based on the averages. 
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2.2.5	
  Scenarios	
  
 
In order to cover a range of possibilities for LomboXnet different scenarios are 

constructed. Possible expansions of the current micro-grid are 5 kWp extra PV on 

the CGU, two extra households, an extra Nissan Leaf and an extra loading station 

with two Focusses. These factors are combined in four scenarios, presented in 

table 2.1. 

 
Table 2.1 Overview of characteristics of scenarios 

 PV Load EV 

Current Current Current Current 

Expansion + 5 kWP + 2 households + 3 EVs 

Low flexibility Current + 2 households Current 

High flexibility + 5 kWp Current + 3 EVs 

 

The scenario “current” represents the situation at LomboXnet as is, the scenario 

“expansion” includes all possible expansions in the foreseeable future. To name 

the other two scenarios the term flexibility is used. “Low flexibility” is used to 

indicate that there is relatively high load demand and low PV-supply, resulting in 

low excess PV-power and just two EVs to balance demand and supply. “High 

flexibility” is used to indicate that there is relatively low load demand and high 

PV-supply, resulting in high excess PV-power and five EVs to balance demand 

and supply. 

2.3	
  Baseline	
  situation	
  
 
In the baseline situation no smart grid technology that controls the EV charging 

patterns is available. It is assumed that when the EVs return from trips they start 

charging immediately at maximum charging power and only stop when the 

battery is full. In the baseline situation the EVs only contribute to increasing self-

consumption when there is accidental excess PV-power at the time steps of 

charging. 

 

In this document, the time step numbers are denoted as t and i is defined as the 

index of the different EVs. In order to determine the loading pattern of the EVs 

denoted as PEVi(t), the inputs are maximum charging power and the energy 

contained in the EV, denoted as PEVi,in,max and PEVi,out,max. Furthermore, when an EV 

is on a trip the energy needed for the trip (EEVi,trip) is taken out of the battery. A 

schematic representation of the system is presented in figure 2.3 
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Figure 2.3 Structure of “uncontrolled charging” 

 

In order to simulate this system a recursive formula is constructed, since PEVi(t) 
depends on PEVi(t-1). This is because the energy contained in the EVs is the sum 

of the previously loaded energy (minus the energy needed for trips). In the 

baseline the loading pattern PEVi(t) is defined by formula (1): 

 

€ 

PEVi ,in t( ) =
PEVi ,in,max if EEVi

t −1( ) < CEVi
and t ∈ tEVi ,l

0 else
⎧ 
⎨ 
⎩ 

 

(1) 

 
With EEVi the energy in EVi, CEVi the battery capacity PEVi,max the maximum 

charging power and tEVi,l the time steps for which the EV is at the loading station 

(not on a trip). 

2.4	
  Control	
  algorithms	
  
 

In this section three control algorithms for smart grid technology designed for 

this research are presented. The main objective of the control systems is to use 

excess PV-power for charging the EVs in order to increase self-consumption. This 

is done while meeting electricity demands for EV-trips. The three control 

algorithms presented are “real-time controlled charging”, “controlled charging 

and discharging” and “linear programming”. Although there are considerable 

differences between these systems, as explained further on in this section, the 

basic structures are the same (see figure 2.4). In addition to the elements for 

the baseline PV-power and load demand and the function EEVi,req(t) that 

determines the required SOC of EVi at time step t are used to determine the 

loading pattern. 
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Figure 2.4 Structure of control algorithms 

2.4.1	
  Real-­‐time	
  Controlled	
  Charging	
  
 
Real-time (RT) controlled charging uses the difference between PPV and Pload for 

every time step t. Based on the energy content of the EV the charging pattern is 

decided. With this algorithm it is not possible to extract energy from the EV in 

order to cover electricity demand of the households. If there is more PV-power 

than electricity demand, the EVs start charging using the excess PV-power until 

the battery is full or until there is no more excess PV-power. The EV only extracts 

energy from the grid when there is shortage of PV-power in order to make a trip. 

 

First EEVi,req, the minimum amount of energy in an EV at time step t taking into 

account the energy needed for trips and maximum charging power, is defined in 

equation (2). 

 

€ 

EEVi req
t( ) =

EEVi ,trip
tEVi ,trip( ) −

PEVi ,in,max tEVi ,trip − t( ) + EEVi ,min

if t ∈ tEVi ,trip −
EEVi ,trip

tEVi ,trip( )
PEVi ,in,max

,tEVi ,trip
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

EEVi ,min
else

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 
(2) 

 

 

With tEVi,trip the time of the next trip, EEVi,trip(tEVi,trip) the energy required for the 

next trip, PEVi,,in,max the maximum charging power and EEVi,min minimum energy in 

the battery. The ‘if’ part of equation (2) describes that if a trip is planned, the 

energy level at the start time of the trips must be the energy needed for the trip. 
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Because the EV has a maximum charging power, the energy level of the time-

steps before the start time of the trip also have to be at a certain level, namely 

the energy required for the trip minus the charging power times the time steps 

that are left to complete charging. This quantity is added to the minimum energy 

level of the EV. At all other time steps the required energy in the EV is the 

minimum energy level of the EV, as the described by the ‘else’ part of equation 

(2). 

 

In the case of multiple EVs a priority function fEVi is needed. First, an urgency 

value UEVi is assigned to each vehicle. UEVi is based on how much time it takes to 

charge the vehicle to a sufficient energy level for the next trip and the time left 

in order to achieve this. fEVi is then calculated as UEVi proportional to the sum of 

UEVi for all vehicles.  
 

€ 

UEVi
t( ) =

tEVi ,trip − t

tEVi ,trip − t − EEVi ,trip
tEVi ,trip( ) − EEVi

t −1( )( ) /PEVi ,max

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

k

 
(3) 

€ 

fEVi t( ) =
UEVi

t( )
UEVi

t( )
i
∑  

(4) 

 
UEVi contains a factor k; in the simulations k = 2 was used so that the effect is 
increased for EVs that have a high urgency for charging compared to k = 1. 
However, it was found that the value for k has little effect on the outcome when 
evaluating system performance for k = 1, 2 or 3, so results apply for all these 
values for k, although it must be noted that testing the effect of the value k was 
done late in this research and has not been tested extensively. 
 
The individual loading patterns are now defined by equations (5), (6), (7) and 
(8). 

 

€ 

PEVi ,in t( ) = PEVi ,in,PV t( ) + PEVi ,grid t( )
 

(5) 

€ 

PEVi ,in,PV t( ) =

fEViηEVi ,in PPV t( ) − Pload t( )( ) if Pload t( ) < PPV t( )
and EEVt

t −1( ) < CEVi

and t ∈ tEVi ,l
0 else

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 
(6) 
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€ 

PEVi ,grid t( ) =

EEVi ,req
t( ) −

EEVi
t −1( ) − PEVi ,in,PV t( )

if EEVi
t −1( ) + PEVi ,in,PV t( ) < EEVi ,req

and t ∈ tEVi ,l

0 else

⎧ 

⎨ 

⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

 

(7) 

€ 

PEVi ,in t( ) ≤ PEVi ,in,max
 

(8) 

 
Equation (5) describes that the EV is charged with power from the PV-

installations and from the grid. If there is more PV-power than electricity 

demand, the EV starts to charge until it is full or until there is no more excess 

PV-power, see equation (6). The EV only extracts energy from the grid when 

there is shortage of PV-power in order to make a trip, see equation (7). Finally, 

equation (8) makes sure the total power into the EV cannot exceed the 

maximum charging power. 

 

2.4.2	
  Real-­‐time	
  Controlled	
  Charging	
  and	
  Discharging	
  
 
This program uses the same equations as “Real-time Controlled Charging”, but is 

also able to extract energy from the EV in order to cover electricity demand of 

households. The additional equations are presented in (9) and (10). 

 

€ 

PEVi ,out t( ) =

1− fEVi
NEVi

−1
ηEVi ,out
−1 Pload t( ) − PPV t( )( ) if Pload t( ) > PPV t( )

and EEVt
t −1( ) < EEVi ,req

t( )

and t ∈ tEVi ,l

0 else

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

 
(9) 

€ 

PEVi ,out t( ) ≤ PEVi ,out ,max
 

(10) 

 
With NEVi the total number of EVs.	
  

2.4.3	
  Linear	
  Programming	
  
  
Increasing self-consumption of PV-power by controlling the charging pattern of 

an EV can be described as a linear optimisation problem and solved by using 
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linear programming. Linear programming is a method to solve constrained 

optimisation problems. Constrained optimisation is a technique used often in 

research on smart grids. Recent examples include Guo et al. (2012), Silva et al. 

(2012), Tanaka et al. (2011), González Vayá and Andersson (2012). 

 

With linear programming cT.x (the objective function) is either min- or 

maximised for x such that A.x ≥ b (for minimising) or A.x ≤ b (for maximising) 

and x ≥ 0. x is a vector representing the unknown variables to be determined, c 

en b are vectors of known coefficients, A is a matrix of known coefficients and 

(.)T is the matrix transpose (Ferguson, 2013). 

 

The problem of the loading pattern can be formulated in such a way that x 

represents the loading pattern for each time step t and that cT.x is the amount of 

electricity stored in the EV. This translates into the following objective function, 

which is maximized: 

 

€ 

PEV ,in,PV t( )
t
∑

i
∑

 

(11) 

 
With PEVi,in,PV the electricity send into the EV. In this section a distinction is made 

between PEVi,in and PEVi,out, since optimising for PEVi,in results in optimising for self-

consumption. This is because PEVi,in is bound to the constraint that only excess 

PV-power is charged (unless in the case of PV-power shortage) and therefore 

increases the self-consumption. The target variable x is bound to constraints, 

represented by the following formula’s: 

 

€ 

0 ≤ PEVi ,in t( ) ≤ PEVi ,in,max t( ), ∀t,i
 

(12) 

€ 

0 ≤ PEVi ,out t( ) ≤ PEVi ,out,max t( ), ∀t,i
 

(13) 

€ 

ηEVi ,inPEVi ,in t( ) −ηEVi ,out
−1 PEVi ,out t( )( )

t '=1

t

∑ ≤ CEVi
+ EEVi ,trip

t( ) − EEVi
0( ), ∀t,i

 
(14) 

€ 

ηEVi ,inPEVi ,in t '( ) −ηEVi ,out
−1 PEVi ,out t '( )( )

t '=1

t

∑ ≥ EEVi ,trip
t( ) − EEVi

0( ), ∀t,i
 

(15) 

€ 

PEV ,in,PV t( ) ≤ PPV t( ) − Pload t( ), ∀t
i
∑

 
(16) 

€ 

PEVi ,out t( ) ≤ Pload t( ) − PPV t( ), ∀t
i
∑

 
(17) 

 
 
With dummy variable t’. Note that in this case PEVi,in,max(t) is represented as a 

function of t, contrary to earlier in this chapter. This is done in order to include 

that is PEVi,in,max is essentially zero when an EV is not at the loading station. Also 
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remember that PEVi,in(t) represents the power drawn from both PV and the main 

grid, see equation (5). 
 
Constraints (12) and (13) ensure that the maximum (dis)charging power is not 

exceeded. Constraints (14) and (15) ensure that the energy in the EV does not 

exceed the battery capacity and is sufficient for trips. Constraints (16) and (17) 

ensure that not more energy is (dis)charged then there is excess or shortage of 

PV-power (when there is not enough PV-power for trips energy is extracted from 

the grid). Furthermore, all variables are non-negative. 

 

In order to provide show how equations (11) till (17) translate into vectors c, x, 

b and matrix A an example is given for N EVs and T time steps. The unknown 

variables are the loading pattern of the EVs at every time step containing 

PEVi,in,PV(t), PEVi,out(t) and PEVi,in,grid(t), so for every time step t three variables are 

needed for each EV. x can now be formulated as follows: 

 

  

€ 

x =

x1
x2


xN ⋅3T −1
xN ⋅3T

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 
(18) 

 
with 

 

€ 

x i−1( )3T + t = PEVi ,in,PV t( ), x i−1( )3T +T + t = PEVi ,out t( ), x i−1( )3T +2T + t = PEVi ,grid t( )
 

(19) 

 

and x ≥ 0.  
 
cT.x must equal the objective function, see equation (11), so c is formulated as 

follows: 
 

  

€ 

c =

c1
c2


cN ⋅3T −1
cN ⋅3T

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 
(20) 

 
with 
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€ 

c i−1( )3T + t =1, c i−1( )3T +T + t = 0, c i−1( )3T +2T + t = 0
 

(21) 

 

Vector b represents all the constraints, see equations (12) till (17). There are 4 

constraints per EV per time step, equations (12) till (15), plus two per time step 

for the total system, equations (16) and (17), so b is formulated as follows:  

 

  

€ 

b =

b1
b2


b 4N +2( )T −1

b 4N +2( )T

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 
(20) 

 

with 

 

€ 

b 4N +2( ) t−1( )+4 i−1( )+1 = PEVi ,in,max t( ),

b 4N +2( ) t−1( )+4 i−1( )+2 = PEVi ,out ,max t( ),

b 4N +2( ) t−1( )+4 i−1( )+3 = CEVi
+ EEVi ,trip

t( ) − EEVi
0( ),

b 4N +2( ) t−1( )+4 i−1( )+4 = EEVi ,trip
t( ) − EEVi

0( ),

b 4N +2( ) t−1( )+4N +1 = PPV t( ) − Pload t( )

b4 4N +2( ) t−1( )+4N +2 = Pload t( ) − PPV t( )

 
(22) 

 

Finally, matrix A is formulated to ensure that every component of A.x 
corresponds to the correct component of b: 

 

€ 

A =

A1
A2
A3
A4
A5
A6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 
(23) 

 

 

with 

 

€ 

A1 = amn[ ]mn =

1 if m = 4N + 2( ) t −1( ) + 4 i −1( ) +1
and n = i −1( )3T + t or n = i −1( )3T + 2T + t ,∀t,i

0 else

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

(24) 

 

31



	
    

€ 

A2 = amn[ ]mn =

1 if m = 4N + 2( ) t −1( ) + 4 i −1( ) + 2
and n = i −1( )3T +T + t ,∀t,i

0 else

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

€ 

A3 = amn[ ]mn =

ηEVi ,in if m = 4N + 2( ) t −1( ) + 4 i − 3( ) + 3
and n = i −1( )3T + t ' or n = i −1( )3T + 2T + t '

−ηEVi ,out
−1 if m = 4N + 2( ) t −1( ) + 4 i − 3( ) + 3 ,∀t,i,∀t'≤ t

and n = i −1( )3T +T + t '
0 else

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

€ 

A4 = amn[ ]mn =

−ηEVi ,in if m = 4N + 2( ) t −1( ) + 4 i − 3( ) + 4
and n = i −1( )3T + t' or n = i −1( )3T + 2T + t'

ηEVi ,out
−1 if m = 4N + 2( ) t −1( ) + 4 i − 3( ) + 4 ,∀t,i,∀t'≤ t

and n = i −1( )3T +T + t'
0 else

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

€ 

A5 = amn[ ]mn =

1 if m = 4N + 2( ) t −1( ) + 4N +1
and n = i'−1( )3T + t ,∀t,i'

0 else

⎧ 

⎨ 
⎪ 

⎩ 
⎪  

€ 

A6 = amn[ ]mn =

1 if m = 4N + 2( ) t −1( ) + 4N + 2
and n = i'−1( )3T +T + t ,∀t,i'

0 else

⎧ 

⎨ 
⎪ 

⎩ 
⎪  

(24) 

cont. 

 

With indices m and n and dummy variables t’ and i’. The problem now becomes: 

 

€ 

max cTx | Ax ≤ b∧ x ≥ 0{ }

 

(25) 

 

 

The main advantage of linear programming is that it gives the optimal charging 

pattern for the EVs. However, contrary to the real-time programs linear 

programming is based on perfect information; all the constraints are known for 

all time steps t. However, PV-supply and electricity demand are not known 

exactly in advance. In order to provide realistic prediction of how effective this 

program would be in reality, several assumptions have been made; load demand 

prediction is based on realised load demand from the previous day (excluding 

some exceptions, explained further on in this section), no technological learning 
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takes place in predicting load demand and predictions of PV-power have an 

uncertainty of σ for each time step. In this thesis, this method is called “Linear 

Programming (Realistic)” contrary to “Linear Programming (Ideal)”, which 

assumes the ideal case of perfect information.  

 

It is assumed that the calculations are made at midnight and are based on the 

load pattern from the previous day.  An exception is made for weekends, since 

weekend load demand differs significantly from weekdays. However, the data is 

only available for a week per household. Because of this predictions for 

Saturdays will be based on data for Sundays and predictions for Mondays will be 

based on data for Tuesdays. This results in the following equations: 

 
For Tuesdays, Wednesdays, Thursdays, Fridays and Sundays: 

€ 

Pload ,prediction t( ) = Pload ,real t − 24h( )

 

(26) 
 

 

For Mondays and Saturdays: 

€ 

Pload ,prediction t( ) = Pload ,real t + 24h( )

 

(27) 

 

The input for PV is based on PV-power predictions. It is assumed that prediction 

deviates from the real value with standard deviation σ, as follows:  

 

€ 

PPV ,prediction t( ) = PPV ,real t( ) ±σ

 

(28) 

 
The linear program is then executed with the predicted values, while it is 

evaluated with the real values. 

 

Finally, because of time constraints only 24 hour simulations are executed. It is 

estimated that one simulation has order n2 time-complexity, with n the number 

of variables. Simulations for longer time periods therefore require a much longer 

calculation time, which was not feasible for the time available for this research. 

This is a problem for modelling linear programming because if there is only one 

trip in a day the control algorithms will only tell the EV to charge and not to 

discharge in the evening and night in order to be able to charge excess PV-power 

the next day. For this reason the original objective function is adapted, see 

equation (29). 

 

€ 

k PEVi ,in,PV t( ) + PEVi ,out ,PV t( )( ) − PEVi ,grid t( )
t
∑

t
∑

i
∑

 

(29) 
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With k a scaling factor in order to determine the relative importance of the first 

two factors compared to the third. Using k = 100 it was found that the control 

algorithm works approximately as if equation (11) was used for a simulation 

longer than 24 hours. This means that equation (21) is adapted, see equation 

(30): 

 

€ 

c i−1( )3T + t =100, c i−1( )3T +T + t =100, c i−1( )3T +2T + t = −1
 

(30) 

 

2.6	
  Performance	
  indicators	
  
 

The research question can be dealt with as an optimisation problem and 

quantitative results for increased self-consumption can be given. Self-

consumption is defined is the relative amount of PV-power for period T used by 

the households and the EVs. Because this indicator is relative (SC(T)∈[0,1]) it is 

easy to compare different situations. It is defined in formula (31). 

 

€ 

SC T( ) =

min PPV t( ),Pload t( ) + PEVi t( )
i
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

PPV t( )t=T0

T

∑

 

(31) 

 

With T the period that is evaluated, T0 the start time of period T. 

 

Another important indicator is the amount of energy sold to the grid for period T. 

This indicator gives an absolute measure of self-consumption. It is defined in 

equation (32). 

 

€ 

Pgrid ,in T( ) = max PPV t( ) − Pload t( ) − PEVi t( ),0
i
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

t=T0

T

∑

 

(32) 

 

With T the period that is evaluated, T0 the start time of period T. 

 

A third indicator, relative peak reduction for period T (RPR(T)) is also used for 

evaluation. RPR compares the deviation of the average of the load demand for 

the main grid Pgrid,tot(t), defined in equation (33), with a control algorithm 

(Pgrid,tot,control(t)) to “Uncontrolled charging” (Pgrid,tot,no control(t)) and is defined in 

equation (34). 

 

€ 

Pgrid ,tot t( ) = Pload t( ) − PPV t( ) + PEVi t( )
i
∑

 

(33) 
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€ 

RPR T( ) =1−
Pgrid ,tot,control t( ) − Pgrid ,tot,control t( )

t=T0

T

∑

Pgrid ,tot,no control t( ) − Pgrid ,tot,no control t( )
t=T0

T

∑

 

(34) 

 

So for example, an RPR-score of 0 indicates no relative peak reduction compared 

to “uncontrolled charging”, a RPR-score of 1 means load demand is totally flat for 

that day and a negative RPR-score would mean that there are more peaks 

compared to “uncontrolled charging”. RPR is mainly of interest for the net 

manager, because electricity supply at peak times has to be bought from peak 

load power plants, which is more expensive than electricity from base load power 

plants. 

2.7	
  Sensitivity	
  analysis	
  
 
The proposed model is based on several assumptions and has many different 

inputs. It is not always clear how these effect each other and the quantitative 

results needed for answering the research question. For this reason a sensitivity 

analysis of the model is performed in order to test the results on changes in 

inputs and assumptions. Because it is not possible to provide an analytical 

sensitivity analysis due to the complex nature of the model, the sensitivity 

analysis will be performed by running simulations with varying input factors. By 

comparing the results from these simulations the sensitivity of the model for the 

varied factors can be quantified. 

 

Ideally, the sensitivity analysis would be executed by varying all input factors 

and all possible combinations of input factors for all possible values of these 

factors. However, due to the limited time available for this research choices 

about which factors to use have been made, based on assumptions on which 

factors are most relevant. Part of these factors are covered by random functions  

each simulation, the difference in input factors for the four scenarios, some of 

these factors will be varied explicitly for the sensitivity analysis. 

 

Each simulation is based on several random functions. These functions represent 

factors that will vary from day to day. The variation of these factors is part of the 

main results. Random functions are used for: 

 

• Selected 24-hour PV-profile 

• Variation in load demand Parkhuis 

• Selected households for load demand profile 

• Factors related to EV-trips (is there a trip that day, start time, end time, 

distance) 
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• EEVi at time step t = 0  

 

The scenarios are based on possible expansions of the micro-grid at LomboXnet. 

The impact of these factors is clear when the results of the scenarios are 

compared. The factors varied in the scenarios are: 

 

• Installed kWp PV-installations 

• Number of households connected to the micro-grid 

• Number of EVs 

 

Furthermore other factors assumed important for the results are tested in the 

sensitivity analysis. Because of time constraints for the research only the 

sensitivity of the scenarios “current” and “expansion” for these factors is tested. 

These scenarios are deemed most interesting for the sensitivity analysis because 

“current” represents the system at LomboXnet as is and “expansion” covers all 

possible expansions in the foreseeable future. The factors include: 

 

• Yearly average electricity demand households 

• Trips per week for the Tesla and the Leafs 

• EV-types 

• EEVi at time step t = 0 

• Quality of PV-power prediction PPV,prediction (variation of σ with a maximum 

yield per day) 

 

For the quality of PV-power prediction σ, see equation (28), is varied. While it is 

possible for PPV to be zero, there is a maximum PV-yield per time step. In order 

to take this into account, for each month a profile of maximum PV-power 

PPV,max,profile is created. This is done by fitting the function defined in equation (35) 

to the maximum yield found in the datasets for each month. 

 

€ 

PPV ,max,profile t( ) = a⋅ e−b
2 t− tmax( )2

 

(35) 

 

After fitting values for a (maximum yield), b (spread) and tmax (time step of 

maximum PV-power) PPV,max,profile for each month is defined. In the sensitivity 

analysis PPV(t) can never exceed PPV,max,profile(t), no matter how big σ is. 

 

Furthermore, the sensitivity of the results for the battery capacity of the EVs will 

be tested. In the model the batteries can always be charged at maximum 

charging power, but in reality charging will be much slower when the state of 

charge of a certain battery approaches SOC = 1. This mechanism can not be 
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included in the way the linear programming algorithm is set up, because it would 

alter the constraints b for each variation of x. For a fair comparison of control 

algorithms it was therefore chosen not to include this effect in all simulation. But 

to get an idea of how much this effects the outcome simulations will be run 

where the battery capacity is 90% of its origin value. 
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3. Input data 
3.1	
  PV	
  
 

The data for PV-power per hour is provided by LomboXnet. The PV-power is 

measured after conversion, i.e., it is the AC power, and any losses from the 

transformer are thus included. The data of the PV-installations at the Parkschool 

is available from July 6th 2011 to December 31st 2012 and shown in figure 3.1. 

The data of the PV-installations of the CGU is available from October 1st 2012 to 

December 31st 2012 and is shown in figure 3.2. In order to get a more clear view 

of the yearly variation the total amount of produced PV-power per week is shown 

in figure 3.3 for both installations. 

 

 
Figure 3.1 Hourly PV-power data for the Parkschool from July 6th 2011 to December 31st 2012 

 
Figure 3.2 Hourly PV-power data for the CGU from October 1st 2012 to December 31st 2012 
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Figure 3.3 PV-power per week for the Parkschool and CGU 

 

For the Parkschool installation the performance ratio (PR) is calculated. The 

performance ratio is defined in equation (36) (SMA, 2013). 

 

€ 

PR =
actual reading of plant output

irradiation value × plant area ×module efficiency

 

(36) 

 

With an actual reading of plant output of 8226.82 kWh, an irradiation value of 

989 kWh/m2 for 2012 (KNMI, 2013), 40 panels and panel area of 40 * 1.6 m2 

and a module efficiency of 15.4% (Suntech, 2013) this results in a performance 

ratio of 0.85. 

 

Reliable data for the installation at the Parkhuis is not available, but this will be 

simulated by taking data from the other installations and normalising this data to 

a nominal power of 3 kWp. This will be the same for the extra 5 kWp for the high 

PV-scenario and the periods of the year for which there is no data from the CGU 

available. In figure 3.4 a scatter plot of the PV-power of the CGU and the 

Parkschool is given for the period for which data from both installations is 

available. In order to find the ratio of the power supply of the two installations, 

two linear function fits were made for the data between 11:00 and 15:00 in 

order to exclude extreme values of the mornings and evenings. First a function 

was fitted of the form f(x) = a x for all data between 11:00 and 15:00, it is 

found that a ≈ 1.52. Because from the scatter plot it seems that the ratio is 

different for lower values of PPV than for higher values a second fit was made 
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which consists of different linear functions for the lower and higher values of PPV. 

For the second fit it is found that a ≈ 2.26 for the lower part and a ≈ 1.10 for the 

higher part, meaning that the CGU installations performs relatively better when 

solar insulation low than when is high solar insulation. For the simulations the 

ratio of the nominal power 18 MWp (for CGU) / 10 MWp (for Parkschool) = 1.8 

was used for scaling the PV-power. The fitting of the functions was done after the 

final simulations were performed. 

 

 
Figure 3.4. Scatter plot of PV-power of the CGU and the Parkschool for the period for which data from both 
installations is available including two fitted functions 

3.2	
  Load	
  demand	
  

3.2.1	
  Households	
  
 

Load demand data for the households is based on week-long measurements with 

time intervals of 15 minutes from Liander taken in February 2008 of a 

neighbourhood with approximately 700 houses, from which 400 were randomly 

selected. The data is provided by Claessen who used it for his MSc. Thesis Smart 
Grid Control (Claessen, 2012). He in turn has received it from the Technical 

University of Twente. A randomly selected example of the data provided to me 

for a week for three houses is shown in figure 3.5. 
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Figure 3.5 Load demand data for a week for three households 

The week-long data is repeated 52 times to cover a year for each household. 

However, in order to account for yearly variation in demand the original data is 

multiplied by a different factor for each week, based on measurements of 

average consumption for a different set of houses taken by Liander in 2007. The 

factors for each week were extracted from the year-long data is provided to me 

and shown in figure 3.6. 

 

 

 
Figure 3.6 Weekly energy use compared to the first week of January 

 

The original data was adapted to make it applicable for the year 2050, the year 

at which the research of (Claessen, 2012) is aimed. The data was multiplied with 
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a scaling factor assuming an annual growth of electricity consumption of 0.5%. 

This research is aimed at the near future, so the data, which was already 

multiplied by this scaling factor, is multiplied with 1.005-26 to make it applicable 

for 2014. 

 

The yearly electricity demand for the households in the provided dataset range 

from 754.863 to 15669 kWh per year and is shown in figure 3.7. In the case of 

LomboXnet, only three to five houses are connected to the micro-grid. It is 

therefore not expected that there will be a large variation in the electricity 

demand from households. Because of this only houses are selected which have 

an electricity demand within 30% of the average for Lombok, which is 3680 kWh 

(Van den Berg et al., 2012), which leaves 143 households from which three to 

five are randomly selected for each simulation. The effects of a larger or smaller 

load demand will be investigated through the outcome of the scenarios, 

sensitivity analysis and different months. 

 
 

Figure 3.7 Total load in for all households, the average and the used selection of houses 

3.2.2	
  Parkhuis	
  and	
  servers	
  
 

The data on which the electricity demand of the Parkhuis is based is provided by 

LomboXnet. From October 29th to November 8th 2012 the net electricity use, 

demand minus PV-power production, was measured. In order to get insight into 

the energy demand of the Parkhuis, PV-data for each hour was extracted from 

the original data. The result is shown in figure 3.8. 
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The servers are constantly using about 2.3 kW, which should be the minimum 

demand for Parkhuis. Since the graph shows that the demand falls below this 

value often and is sometimes even negative, it is clear that the applied method 

does not work perfectly. Therefore the choice is made to use the data to 

establish a profile for the simulations in order to create a more realistic demand 

curve.  

 

The method by which this is done is first to assume a constant minimum demand 

of 2.3 kWh for the servers. Then the profile of the Parkhuis is established by 

taking the average and deviation for each hour excluding the minimum and 

maximum, see figure 3.9. In the final simulations, the demand for each hour is 

varied within the limits of the deviation, so a realistic demand curve can be 

simulated. 

 

 
Figure 3.8 Load demand for the Parkhuis for October 29th to November 8th 2012 
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3.3	
  EVs	
  
 
The technical specifications for the EVs were retrieved from the respective 

manufacturers and the United States Environmental Protection Agency. In case 

of a lack of data a reasonable assumption is made. Only the technical 

specifications which are relevant to the micro-grid model are included. In table 

3.1. an overview of the input data is presented. An interesting observation is that 

the relevant technical aspects for the Nissan Leaf and the Ford Focus are very 

similar to each other, especially when compared to the Tesla. 

 

Furthermore an estimation of the use of the EVs must be made. This was done 

based on the ideas on EV-use from Robin Berg at LomboXnet. The result is 

presented in table 3.2. The Tesla is for private use and the Nissan Leaf(s) are 

rental cars. Both cars are estimated to make about three trips per week which 

will last between 3-6 hours and will be between 20 km and full range. The third 

loading station is not yet in place, but if it is there it will be used by at least one 

Ford Focus Electric which is used for commuting. This is why trip per week, trips 

times and minimum trip distance are longer for the Focus then for the Tesla and 

Leafs. It is not yet known what second car would use the third loading station, 

here it is assumed that it will be a second Ford Focus with the same 

characteristics. 

Figure 3.9 Generated load demand profile for the Parkhuis minus servers including deviations 
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Table 3.1 Relevant technical specifications for simulated EVs 

 
Tesla Model S (2013, 85 kWh) 
Source Tesla2 EPA2 Assumption Used in model 
CBat (kWh) 85 85  85 
Pmax,in (kW) 11/22   223 
Pmax,out (kW)   11/224 223 

Combined Pcons 
(kWh/km) 

 0.2365  0.236 

Range (km)  426 2886 288 
η in    81% 81% 
ηout   81% 81% 
SOCmin   20% 20% 
 
Nissan Leaf (2011/12 model) 
Source Nissan2 EPA2 Assumption Used in model 
CBat (kWh) 24 24  24 
Pmax,in (kW) 3.3/6.6   6.63 
Pmax,out (kW)   3.3/6.64 6.63 
Combined Pcons 
(kWh/km) 

0.173 0.2115  0.211 

Range (km) 175 117 916 91 
η in  81%  81% 
ηout  81%  81% 
SOCmin   20% 20% 
 
Ford Focus Electric (Third generation) 
Source Ford2 EPA2 Assumption Used in model 
CBat (kWh) 23 23  23 
Pmax,in (kW) 6.6   6.63 
Pmax,out (kW)   6.64 6.63 
Combined Pcons 
(kWh/km) 

 0.1995  0.199 

Range (km)  122 926 92 
η in    81% 81% 
ηout    81% 81% 
SOCmin   20% 20% 

 

                                   
2 Sources: Tesla Model S: www.teslamotors.com, Nissan Leaf: www.nissan.nl/Leaf, Ford Focus: 
www.ford.nl/Focus, EPA: www.fueleconomy.gov 
3 It is assumed that the fast charging option is available. 
4 It is assumed that discharging is as fast as charging. 
5 Based on 55% city and 45% highway driving. The EPA values are considered more reliable than the 
manufacturer values so these are the values that are used in the model. 
6 The assumed range is much lower than the rated EPA-estimated range, because it is calculated with the 
combined Pcon (city and highway) and the EPA-estimated range assumes the minimum Pcons

 and a minimum SOC 
of 10%. In the model this is not of particular interest, the only interesting aspect is the SOC at the start and 
return of a trip. This is why it is not considered a problem. 
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Table 3.2 EV use 

Car Trips per week 
(average) 

Trip duration (h) Trip times of day 
(h) 

Trip distance 
(range) (km) 

Tesla 3 Between 3 and 6 Between 9:00 and 
19:00 

20-288 

Leaf 1 3 Between 3 and 6 Between 9:00 and 
19:00 

20-91 

Leaf 2 3 Between 3 and 6 Between 9:00 and 
19:00 

20-91 

Focus 1 5 Between 6 and 10 Between 8:00 and 
19:00 

60-92 

Focus 2 5 Between 6 and 10 Between 8:00 and 
19:00 

60-92 

 

3.4	
  Scenarios	
  
 
Based on the input data the following scenarios (see table 3.3) are constructed. 

 
Table 3.3 Input data for the scenarios 

 Current Expansion Low 
flexibility 

High 
flexibility 

Parkhuis 3 3 3 3 
Parkschool 10 10 10 10 
CGU 18 23 18 23 

Installed PV-power 
(kWp) 

Total 31 36 31 36 
Parkhuis 6.3 6.3 6.3 6.3 
Servers 20 20 20 20 
Households 11 18 18 11 

Average electricity 
demand per year 
(MWh) 

Total 37.3 44.3 44.3 37.3 
Tesla 85 85 85 85 
Leaf 24 48 24 48 
Focus 0 46 0 46 

Total battery 
capacity EVs (kWh) 

Total 109 179 109 179 

 
Each scenario is evaluated for every month of the year and based on the results 

they can be compared on the performance indicators for a year. In the case of 

the scenarios “current” and “low flexibility”, both including 2 EVs, the simulations 

will have a time steps of 15 minutes. For input data of PV-power and load 

demand from the Parkhuis an interpolation function will be used in order to 

convert the data from a resolution of 1 hour to 15 minutes. In the case of the 

scenarios “expansion” and “high flexibility”, both including 5 EVs, the simulations 

will have time steps of 1 hour because of time considerations; it is estimated that 

one simulation has order n2 time-complexity, with n the number of variables. The 

input data for household demand will therefore be averaged for an hour. 
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3.5	
  Sensitivity	
  analysis	
  
 
In the sensitivity analysis the factors yearly average electricity demand 

households, trips per week for the Tesla and the Leafs, EV-type and energy in EV 

battery at the start time of a simulation are varied. For each factor, three 

scenarios are investigated, with “medium” or “normal” being the value that is 

used for the main simulations. The scenarios and associated values are 

presented in table 3.4. 

 
Table 3.4 Input data for the sensitivity analysis 

Scenario Lower Medium High Yearly average 
electricity 
demand 
households 

kWh/yr 2680 ± 30% 3680 ± 30% 4680 ± 30% 

Scenario Less Medium More Trips per week for 
the Tesla and the 
Leafs 
 

Trips per week 1 3 6 

Scenario Normal All Tesla All Leaf EV-type for 
“current”6 

 EVs 1 Tesla, 1 Leaf 2 Tesla 2 Leaf 

Scenario Normal All Tesla All Leaf EV-type for 
“expansion”7 
 EVs 1 Tesla, 2 Leaf, 

2 Focus 
5 Tesla 5 Leaf 

Scenario Normal Empty Full Energy in EV 
battery at start 
time simulation EEVi(0) Random =EEVi,req(1) =CEVi 

 
Using the PV-datasets, for each month equation (35) was fitted for the variables 

a, b and tmax, resulting in a maximum PV-power profile for each month. The 

results are presented in figure 3.10. In the main simulations σ is 10%, in the 

sensitivity analysis σ is varied between 0 and 50%. 

 

                                   
7 It is assumed that EV-trips can make use of the total battery capacity of the EV, meaning that in the scenario 
“All Tesla” maximum and mean trip distance will increase and in the scenario “All Leaf” maximum and mean 
trip distance will decrease compared to scenario “normal” 
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Figure 3.10 Established PPV,max,profile for each month 
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4. Results 
 

In this chapter the results from the simulations are presented and analysed. In 

section 4.1 the results for each separate scenario are presented. In section 4.2 

the results of the sensitivity analysis are presented. Finally, in section 4.3 the 

results of the performance indicators and sensitivity analysis for all scenarios are 

compared. This comparison gives insight into the operation of the control 

systems under different conditions and conclusions for which control algorithms 

are preferred can be derived from these results. 

4.1	
  Scenarios	
  
 
In this section the results for each scenario are presented. Each consists of two 

parts.  

 

In the first part the PV, load, and EV-charging profiles for one particular day are 

shown. These examples are based on the same PV-profile, EV-trips and load 

profiles (for the scenarios “expansion” and “high flexibility” two more households 

are included). The examples show a day in July, which means high PV yield and 

low household load, because then the effects of the control systems are more 

clear then in a winter situation. In the examples all the EVs take a trip in order to 

show the effects of the control systems, in the complete year-long simulations 

this will occur only 18% (for “current” and “low flexibility”) and 4% (for 

“expansion” and “high flexibility”) of the time. In all the examples the EV-

batteries are half full at t=0, except in the case of “uncontrolled charging”, since 

the batteries are fully charged in the previous night. 

 

In the second part of the sections on the scenarios the results of the total 

simulations are shown. The results are evaluated for the performance indicators 

as defined in section 2.6 for each month and for the total year. Conclusion on 

system performance of each control algorithm for each scenario is based on the 

results for these indicators. All results per month per control algorithm are based 

on 60 24 hour-simulations for each scenario, 60 instead of 30 in order to 

improve the statistical basis of the results, which means yearly results are based 

on 720 simulations for each scenario. 

4.1.1	
  Current	
  
 
In figure 4.1 the example simulations for the scenario “current” are presented. 

The different effects of the control simulations can be explained with the help of 

these pictures.  
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In the case of “uncontrolled charging”, the EVs arrive at the loading station after 

a trip and start charging until they are full, in this case it means that they start 

charging in the late afternoon (Tesla) and evening (Leaf).  

 

In the case of “RT controlled charging”, the Tesla starts loading at 10:00 because 

it needs the energy for a trip, while the Leaf starts loading at 11:00 because at 

that time there is excess PV and the energy is not needed earlier. Both EVs also 

charge when coming back from the trip, since there is a small amount of excess 

PV. 

 

In the case of “RT controlled charging and discharging” both EVs start 

discharging because there is no PV to cover load demand. For the Tesla this 

means that it will have to charge at maximum power longer than in the previous 

case in order to have sufficient energy available for the trip. The trip with the 

Leaf is later that day, so because energy was discharged in the night more 

energy can be stored during the afternoon, which results in higher self-

consumption of PV-power when compared to the previous case (see later). In the 

evening the energy available in the EVs is discharged to cover load demand. 

 

In the case of “linear programming (ideal)” both EVs charge much less in the 

morning than in the previous case, because the system takes into account the 

planned trips. The total amount of discharged power is just enough to have the 

storage amount available to cover maximum self-consumption in the morning. In 

the evening the energy available in the EVs is discharged to cover load demand. 

Note that the realistic case of “linear programming” does not deviate much from 

the ideal case, although the load curve is less flat. 
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Figure 4.1 Example of a 24 hour-simulation for each control system in the scenario “current”. The top of the colored 
area shows the total load demand, if the colored region is under the x-axis it means the batteries are discharging. The 
lines indicate the times the EVs are on a trip, with a color corresponding to the color presented in the legend 
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In figure 4.2 the results of the simulations evaluated for the performance 

indicators per month and for the total year are presented. It can be seen that all 

proposed control systems contribute significantly to self-consumption and reduce 

the energy send to the grid. Although the difference between the baselines and 

the control systems for self-consumption is small or non-existent for months with 

little PV-power (especially December), the difference between the performances 

of the control systems during the other months is relatively small. 

 

As expected the “linear programming (ideal)” algorithm performs best in all 

cases. However, the difference on self-consumption and energy send to the grid 

between “linear programming (realistic)” and “RT controlled charging and 

discharging” are small. The difference between these control algorithms is more 

clear when looked at peak reduction, in which “linear programming (realistic)” 

performs better than “RT controlled charging and discharging”. 

 

Furthermore, it is interesting to note that in months with low PV and high load 

(January, February, October, November and December) “RT controlled charging” 

performs better on peak reduction than “RT controlled charging and discharging”, 

while in the rest of the months it is the other way around. The explanation for 

this is that when there is little excess PV-power the EV will discharge a lot of 

energy so that it needs to charge much more energy for a trip than if it had not 

discharged, while if there is plenty excess PV-power the EV will have charged 

enough PV-power for a trip and can send energy to the other loads which flattens 

total load demand. 
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Figure 4.2 Results evaluated for performance indicators of the scenario “current” 
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4.1.2	
  Expansion	
  
 
In figure 4.3 the example simulations for the scenario “expansion” are 

presented. The figures will not be discussed as extensively as in the previous 

section, because the effects are similar. However, the effects in the load pattern 

are bigger, because more EVs are used. An interesting aspect to note is that in 

both cases of “linear programming” both Focus EVs are minimally (dis)charged. 
 

 

In figure 4.4 the results of the simulations evaluated for the performance 

indicators per month and for the total year are presented. These results will not 

be discussed as extensively as in the previous section since the effects are 

similar, but note that the variation per month on self-consumption is more 

significant here than in the previous section. Furthermore, “linear programming 

(realistic)” performs bad on self-consumption in months January, November and 

December, but because PV-power is low in that months, the effect is limited on a 

yearly basis. 

Figure 4.3 Example of a 24 hour-simulation for each control system in the scenario “expansion”. The top of the 
colored area shows the total load demand, if the colored region is under the x-axis it means the batteries are 
discharging. The lines indicate the times the EVs are on a trip, with a color corresponding to the color presented in 
the legend 
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Figure 4.4 Results evaluated for performance indicators of the scenario “expansion” 
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4.1.3	
  Low	
  flexibility	
  
 
In figure 4.5 the example simulations for the scenario “low flexibility” are 

presented. The results are similar as with the scenario “current”, but in this 

scenario there is less excess PV-power to charge or store.  

 

In figure 4.6 the results of the simulations evaluated for the performance 

indicators per month and for the total year are presented. 

Figure 4.5 Example of a 24 hour-simulation for each control system in the scenario “low flexibility”. The top of the 
colored area shows the total load demand, if the colored region is under the x-axis it means the batteries are 
discharging. The lines indicate the times the EVs are on a trip, with a color corresponding to the color presented in 
the legend 
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Figure 4.6 Results evaluated for performance indicators of the scenario “low flexibility” 
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4.1.4	
  High	
  flexibility	
  
 
In figure 4.7 the example simulations for the scenario “high flexibility” are 

presented. The results are similar as with the scenario “expansion”, but in this 

scenario there is more excess PV-power to charge or store.  

 
Figure 4.7 Example of a 24 hour-simulation for each control system in the scenario “high flexibility”. The top of the 
colored area shows the total load demand, if the colored region is under the x-axis it means the batteries are 
discharging. The lines indicate the times the EVs are on a trip, with a color corresponding to the color presented in 
the legend 

In figure 4.8 the results of the simulations evaluated for the performance 

indicators per month and for the total year are presented. 
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Figure 4.8 Results evaluated for performance indicators of the scenario “high flexibility” 
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4.2	
  Sensitivity	
  analysis	
  
 
In this section the results from the sensitivity analysis are discussed. In section 

2.7 a distinction was made between factors affecting the results included in each 

24 hour-simulation, the difference between scenarios and factors only tested in 

the sensitivity analysis. Here, only the latter are discussed. Results for the 

extreme scenarios for yearly average electricity demand households, trips per 

week, EV-type, energy in EV-batteries at start time simulations and EV-battery 

capacity are based on 120 simulations while results for the medium scenarios are 

based on 620 simulations. This was done because of time-constraints for this 

research. This difference must be taken into account when interpreting the 

results. 

 

In figure 4.9 results for the sensitivity analysis on yearly average electricity 

demand households are presented.  Based on the graphs, it can be concluded 

that the yearly average electricity demand only has a slight effect on the 

outcome, especially for the scenario “current”. The largest difference can be seen 

for “uncontrolled charging”, this can be explained that in the absence of a smart 

charging system the EV charging profiles are not dependent on Pload, and a 

higher household load automatically leads to increased self-consumption. 

However, when looking at the results for energy to grid for the scenario 

“expansion”, it seems the lower scenario performs better the medium scenario. 

 

Figure 4.9 Results for sensitivity analysis on yearly average electricity demand households 
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This is because in the simulations for the lower scenario total PV-yield was lower 

than in the other scenarios, this can happen because of the lower number of  

simulations. This is reflected in the results for SC (which is a relative indicator), 

because here the difference between the scenarios is small. For RPR there is no 

significant difference between the scenarios. The small effect of yearly average 

electricity demand households is probably due to the relatively small portion 

household demand takes up of Pload when compared to load demand of the 

Parkhuis and servers. Also, load demand is highest when PV-power supply is low. 

 

In figure 4.10 results for the sensitivity analysis on trips per week are presented. 

Based on the graphs, it can be concluded that trips per week has a significant 

effect on the outcome. For “uncontrolled charging” more trips per week have a 

positive effect on SC. This is to be expected because with more trips per week 

EVs will charge more often also during periods with excess PV-power. For all 

control algorithms in the scenario “current” more trips per week have a negative 

effect on SC and RPR. This result indicates that the balancing function of the EVs 

have a greater effect on SC than the energy needed for trips. For the scenario 

“expansion” less trips per week has results in more energy to grid, but this is due 

to more total PV-yield in the simulations for less trips than for normal amount of 

trips (see results for SC). However, while for more trips the effect is the same as 

for the scenario “current” the difference between less and normal trips is small, 

meaning that the balancing function and energy needed for trips outweigh each 

other for these two scenarios. 

 

 
Figure 4.10 Results for sensitivity analysis on trips per week 
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In figure 4.11 results for the sensitivity analysis on EV-type are presented. The 

results show that having only Teslas available can have a significant positive 

effect on SC, especially in the scenario “expansion”, while having only Leafs has 

a significant negative result on SC, especially in the scenario “current”. This is as 

expected, because the Tesla has a large range than the Leaf, so it uses more 

energy for trips than the Leaf. At the same time the Tesla has a much larger 

battery capacity than the Leaf, so when it is not on a trip it has a greater 

balancing potential than the Leaf.  

 

In the scenario “expansion” there are more EVs available than in the scenario 

“current”. Furthermore, the extra EVs in the normal scenario “expansion” are a 

Leaf and two Focusses, which have a comparable battery capacity as the Leaf. In 

the normal scenario “current” the relative amount of Teslas is greater than in the 

normal scenario “expansion”. This is why the effect of “all Tesla” is greater in the 

scenario “expansion” and the effect of “all Leaf” is smaller. Another interesting 

aspect is that the difference between the EV-type scenarios is smaller for the 

linear programming algorithms than for the RT algorithms. You could say that 

using a mathematical optimisation control algorithm instead of a RT control 

algorithm decreases the need for including cars with bigger battery capacities in 

the micro-grid. Furthermore, RPR is not significantly effected by EV-type. 

 

 

 
 

 

Figure 4.11 Results for sensitivity analysis on EV-type 
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The results of the sensitivity analysis for the energy in the EV-batteries at time 

step t = 0 are presented in figure 4.12 for the scenario “current” and 4.13 for the 

scenario “expansion”. Only results for SC are shown, the results per month for 

the main simulations can be found in figure 4.2. The graphs show that especially 

the outcomes for RT control algorithms are sensitive to starting energy. In 

summer months, EV-batteries are more likely to be relatively full around 

midnight, due to high excess PV-power. In the case of “RT controlled charging” 

this means that self-consumption in summer months is over-estimated in the 

main simulations. If the EVs can also discharge the batteries will not be 

completely full because they will discharge energy in the evenings to cover load 

demand. The extreme scenario of the battery being completely full at midnight 

will therefore not occur. But is still is possible that the results for “RT controlled 

charging and discharging” are over-estimated in the main results, especially in 

the scenario “expansion”, although to a lesser extent than if discharging is not 

available. For the linear programming control algorithms over-estimation of 

results is small.
 

 

 
Figure 4.12 Results for sensitivity analysis on energy in EV-batteries at start time simulations for the scenario 
“current” 
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Figure 4.13 Results for sensitivity analysis on energy in EV-batteries at start time simulations for the scenario 
“expansion” 

In order to quantify the amount of over-estimation of the effect of the RT control 

algorithms the simulations for a month are executed. This way the energy in the 

EV-batteries at the starting time only have to be determined for the first day of 

the month, so the random function has a much smaller effect on the outcome. 

Results for SC of the 24 hour-simulations and the month simulations for the 

scenarios “current” and “expansion” are presented in figure 4.14. Based on the 

results it is concluded that the largest effect on SC is for “RT controlled 

charging”; -15% in the scenario “current” and -4% in the scenario “expansion”. 

For the control algorithm “RT controlled charging and discharging” the effect is   

-6% for the scenario “current” and +1% for the scenario “expansion”. Overall it 

is concluded that especially the results for SC of “RT controlled charging” in the 

scenario “current” are significantly over-estimated, while for the other cases the 

effect is limited. 
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Figure 4.14 SC of 24 hour-simulation compared for the month simulations for the baseline and RT control algorithms 
for the scenarios “current” and “expansion” 

In figure 4.15 results for the sensitivity analysis on quality of PV-power 

prediction are presented. As expected, increased σ has a negative effect on the 

results. Results show that the effect increases as σ increases. This is interesting 

because it shows that if σ is within an acceptable (for instance σ < 20%) 

investments in increasing quality PV-power prediction has only a slight effect and 

can be considered unnecessary. Furthermore, variation of σ has a large effect for 

the scenario “current” than for the scenario “expansion”. 

 

In figure 4.16 results for the sensitivity analysis for EV-battery capacity are 

shown. The graph show the relative decrease of SC when compared to normal 

simulations. This sensitivity analysis is meant to estimate the order of magnitude 

of the absence of the change in maximum EV-charging power when the battery 
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is nearly full. The results show that this is in the range of 0.1% to 3% and that 

for the control algorithms it is around 1.5%. 

 

 

Figure 4.15 Results for sensitivity analysis on quality PV-power prediction 

 

	
  
Figure 4.16 Results for sensitivity analysis on EV battery capacity 
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4.3	
  Comparison	
  and	
  interpretation	
  
 
In figure 4.17 results for a year for all scenarios are presented. Based on these 

graphs conclusions on the working of the control algorithms and the scenarios 

can de drawn. First the results for control algorithms will be compared and 

interpreted  and then the scenarios. The results of the sensitivity analysis on 

energy in EV-batteries at start time simulations and EV-battery capacity are 

included in the standard deviations of the results8. 

4.3.1	
  Control	
  algorithms	
  
 

First of all it can be seen that all have a positive effect of 25% to 55% on SC 

compared to “uncontrolled charging” and the control algorithms with the 

possibility of discharging EVs to cover load score 3% to 25% better than “RT 

controlled charging”. “Linear programming (ideal)” is the optimal solution, but 

when looking at the realistic version the difference between linear programming 

and a RT control algorithm is small. The results for SC are also reflected in the 

indicator energy to grid, which gives an absolute measure for self-consumption.  

 

Furthermore, all control algorithms score positive on RPR, between 56% and 

82%. The difference between “RT controlled charging and discharging” and 

“linear programming (realistic)” is more clear on RPR than on SC; the former 

scores between 5% and 20% worse than the latter. 

4.3.2	
  Scenarios	
  
 

When comparing the scenarios, one of the first things to notice is that the 

difference of “current” versus “low flexibility” and “expansion” versus “high 

flexibility” is small. The only difference between these scenarios are the number 

of households included in the micro-grid (see table 2.1), so based on these 

results it can be concluded that household load demand is too small a portion of 

total load demand to make a big impact on the results. Also, load demand is 

highest when PV-power supply is low. In the sensitivity analysis of yearly 

average electricity demand households, the same conclusion was drawn. 

 

There is a large difference when comparing “current” and “low flexibility” versus 

“expansion” and “high flexibility”. The first two score better on all indicators than 

the latter two, leading to the conclusion that the extra electricity demand and  

balancing capacity of the EVs cannot consume and balance all the 5 kWp extra 

installed PV-power. This means that without further expansions of the micro-grid 

                                   
8 The section on sensitivity analysis for these factors only contained results for SC. Calculations were also 
performed for the other indicators and are included in the standard deviations.  
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at LomboXnet an investment in extra PV-installations is not necessary and when 

the goal is increasing SC it is a bad decision.  

 

Overall the results are promising. It is shown that storage of PV-electricity in EVs 

can significantly increase PV-power self-consumption while meeting demands 

posed by EV use, reducing the need for a separate battery. As a side-effect, load 

demand is flattened during a day, which is beneficial for the grid manager. 

 

However, some results from the sensitivity analysis show that the effects might 

be over-estimated. The most important factor is the energy in the batteries at 

the start of the simulations. In the main simulations this factor was determined 

by a random function. This might lead to over-estimation especially for the RT 

control algorithms during summer months, even more if EV-discharging is not 

available. The largeness of this effect has been estimated by performing month-

long simulations for the RT control algorithms and has been included in the 

standard deviations of the results. Furthermore, an estimation was given for the 

reduced SC because of the absence of the change in maximum EV-charging 

power when the battery is nearly full, which is around 1.5% for the control 

algorithms. 
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Figure 4.17 Results evaluated for performance indicators for a year of all scenarios 
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5. Discussion 
 
The results presented in the previous chapter are based on a number of 

assumptions and data sets that effect the quality of the results. In this chapter 

the most important ones related to model structure, input data and the 

simulations will be discussed. Furthermore, uncertain factors that will become 

important when actually implicating a smart grid system at LomboXnet will be 

expanded upon. 

5.1	
  Model	
  structure	
  
 

EV charging power 
In the model the batteries can always be charged at maximum charging power, 

but in reality charging will be much slower when a battery is almost full. Because 

this aspect could not be included in the current form of linear programming it has 

not been taken into account. This model can be improved by using another 

mathematical optimisation method which can incorporate this effect. An 

estimation  of the effect has been given, which showed that SC decreases with 

around 1.5% for all control algorithms. 

 
Low Voltage transport losses 
Energy losses due to transport through the micro-grid were not taken into 

account in the model. In a research similar to this research Claessen (2012) 

concluded that transport losses in a micro-grid are significant. This model could 

be improved by including transport losses. 

5.2	
  Input	
  data	
  
 

PV 
In the simulations, PV data for the Parkschool from July 6th 2011 to December 

31st 2012 was used and PV data for the CGU from October 1st 2012 to December 

31st 2012. In the months January until September only upscaled data from the 

Parkschool was used for the PV-profiles. For this, the ratio 18 MWp/10 MWp was 

used, while determination of the ratio using linear fitting showed that this ratio 

might not be representative of the real situation. However, because the fitting 

was done after the simulation period, this was not taken into account. For future 

simulations it is advisable to first further research the ratio between the 

performance of the two systems. Because results are given for a whole year, it 

must be taken into account that the sample base is relatively small, respectively 

one and a half year and three months. Furthermore, interpolation was used in 

the simulations with time steps of 15 minutes. In reality, PV-power will show 

70



	
    

more variation at that time resolution, it is not clear how much that will effect 

the results. 

 

Electricity demand households 
The profile for electricity demand of households is based on a dataset of 400 

households from 2008 and measurements for a week factor in 2007. Both 

measurements were taken at different locations at different times, so it is not 

known how closely they resemble a typical load demand pattern in Lombok. Also 

the dataset contains information on aggregated load demand for one week in 

February, which means that scaling the dataset for a year might not necessarily 

reflect how electricity demand changes throughout a year. Outcomes of the 

model may be improved by using data measured in Lombok itself, but this was 

not available at the time of writing. Furthermore electricity demand for a longer 

time period then a week, preferably for a whole year, can improve the results. 

However, the sensitivity analysis showed that demand for households has a very 

limited effect on the outcomes of the model, so this factor is not very important 

for the results. 

 

EV technical specifications 
The input for the technical specifications for each EVs is based on two sources 

(manufacturer and EPA) and assumptions (see table 3.1). The two sources 

sometimes contradict each other. The EPA is considered a neutral source and is 

therefore deemed more reliable, but factors such as range and power-

consumption depend to a large extend on the user. Best would be to use 

personal data from the person driving the EV for these factors, but this was not 

available. The used numbers should be considered an estimation. Furthermore, 

since there was no information on discharging power available it is assumed that 

the EV can discharge as fast as it can charge. If this value turns out to be lower, 

the effect of control algorithms that include discharging will be decreased, with 

as minimum the results of “RT controlled charging”. 

 

EV use  
The characteristics of EV use for all EVs are based on thoughts and estimations 

by Robin Berg from LomboXnet. It could turn out that the use of EVs is different 

than expected. The sensitivity analysis on trips per week showed that EV-use 

does effect the outcomes of the model significantly. In the sensitivity analysis 

two extreme scenarios, 1 and 6 trips per week, were simulated. The resulting 

range for the indicators gives a good idea on what the maximum effect of 

different EV use than expected could be.  
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5.3	
  Simulations	
  
 

Time steps 
Because of time considerations the scenarios “expansion” and “high flexibility” 

were simulated with time steps of one hour as opposed to 15 minutes. In the 

graphs for individual runs (figures 4.1, 4.3, 4.5 and 4.7) it can be seen that 

changes in charging patterns do occur within a 15 minute resolution. A one hour 

resolution might affect the quality of the results, but it is not clear how much. 

Faster calculation methods or computers can solve this problem. 

 

Objective function of linear programming 
Because longer than 24 hour-simulations of the linear programming control 

algorithms could not be executed in the time-frame of this research the objective 

function of linear programming was adapted in order to simulate the behaviour 

of the original objective function. In the experience of the author the adapted 

objective function performed as it should, but it is not possible to perform this 

test for all simulations. However, based on the performed tests it is estimated 

that this aspect does not affect the results significantly.  

 
Energy in EVs at start of simulations 
The energy in the EVs at time step t=0 is determined by a random function. The 

sensitivity analysis showed that this might lead to over-estimation of the results, 

especially for the RT control algorithms during summer months, even more if EV-

discharging is not available. An estimation of this effect has been given by 

running month-long simulations for the RT control algorithms. It was shown that 

the effect is largest for “RT controlled charging” in the scenario current (-15% for 

SC) and this effect should be taken into account. The model can be improved by 

making yearlong simulations available, which will only require the starting 

energy of the first day of the year. 

 

Sensitivity analysis 
Ideally the sensitivity analysis would cover the variation of every factor within 

reasonable limits and every combination of factors. For this research this was not 

possible due to time constraints. The selected factors are considered most 

interesting by the author, but it is not clear for every factor how much impact 

variation would have on the results. Furthermore, the sensitivity analysis is 

based on 120 24 hour-simulations for each scenario, which is small when it gives 

results for a year. Results can be improved by performing a more extensive 

sensitivity analysis. 
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5.4	
  Practical	
  implementation	
  
 

In this thesis, a model is proposed in order to quantify the potential of increasing 

PV self-consumption in the case of LomboXnet. LomboXnet aims at implementing 

such a system in the near future, therefore it is interesting to consider some 

points that are relevant when transferring the model to reality 

 

Hardware 
LomboXnet already has a smart meter available and also PV-power is directly 

measured. However, for the proposed control algorithms it would be necessary 

to install smart meters at every household connected to the micro-grid. 

Furthermore a device needs to be installed to which all the data (Parkhuis, 

households, PV and EVs) is send and that can control the electricity distribution 

based on a selected control algorithm. For real-time control algorithms the data 

must be send to this device in real-time, while the linear programming algorithm 

only needs the data when calculating the electricity distribution (for instance at 

24:00) in order to make predictions. 

 

PV-power forecasting 
For the linear programming control algorithm PV-power forecasting for the next 

day must be made available. The forecasting should include the predicted PV-

yield for every time step for all PV-installations. In order to provide optimal 

predictions the performance of the PV under different external conditions can be 

further investigated, but the sensitivity analysis showed that above a certain 

threshold the quality of PV-power predictions only has a limited impact on 

system performance. 

 

EV-trip planning 
For all proposed control algorithms it is necessary to plan all EV-trips at least one 

day in advance and enter them into the system. It might be unreasonable to 

expect that effort from everyone involved in the project. An alternative could be 

to have the SOC of EV-batteries always be a certain value, but this would reduce 

to potential of increasing self-consumption. In this research a minimum SOC of 

20% is assumed, allowing for a short-distance emergency trip. 

 

Demand side management 
It is possible that in the houses connected to the micro-grid a demand side 

management system is installed. This way household load demand would shift 

more towards times when PV-power is available and increase self-consumption. 

If this is the case the potential of further increasing self-consumption by storing 

electricity in EVs will be reduced. 

 

73



	
    

 

6. Conclusion and recommendations 
 

In this thesis, a theoretical model is proposed in order to quantify the potential of 

increasing PV self-consumption with a combination of smart grid technology and 

electricity storage in EVs in the case of LomboXnet. For this model three control 

algorithms are developed: “RT controlled charging”, “RT controlled charging and 

discharging” and “linear programming”. Four scenarios are constructed, based on 

the current system in place at LomboXnet and possible future expansions. The 

effect of the control algorithms is simulated for all scenarios and evaluated on 

self-consumption, energy send to the main grid and relative peak reduction. The 

results are compared to a baseline, in which no control algorithm is available. 

The results show that smart storage of electricity in EVs can increase self-

consumption with 15% to 35%, energy send to the main grid with 5 to 8 MWh 

per year and relative peak reduction with 55% to 75%, depending on which 

control algorithm and scenario is chosen. Furthermore, a comparison of scenarios 

showed that extra installed kWp solar power is not advisable when evaluating for 

self-consumption. 

 

Based on the results it can be concluded that designing an EV-charging control 

algorithm based on linear programming is the best way to increase self-

consumption for LomboXnet. Although such a design would be more complex 

than RT algorithms, because it is based on predictions and needs a longer 

calculation time, the linear programming algorithms perform best in the 

simulations and even more importantly in the sensitivity analysis. The RT control 

algorithms score almost as good as the linear programming algorithm for SC, but 

score significantly worse for RPR and turn out to be very sensitive to 

uncertainties and assumptions in the model, especially for the scenarios with 

only two EVs available. However, if a less complex smart grid system is more 

desirable the RT control algorithms also contribute significantly to SC, especially 

if discharging is available. 

 

The developed model is based on several assumptions and uncertainties that 

affect the quality of the results. Some assumptions in the model, such as EV-

charging efficiency and energy in EV-batteries at the start of a simulation, were 

left out on purpose in order to give a fair comparison of control algorithms. 

However, the sensitivity analysis showed that the RT algorithms are more 

sensitive to these factors than the linear programming algorithm. If, based on 

the results presented in this thesis, a choice is made for which option is most 

interesting for LomboXnet further research could focus on developing a more 

precise model for that specific control algorithm. Furthermore, datasets can be 
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improved if more data is available, this is especially important for datasets 

related to load demand of households, since they are based on households in a 

different area in different years. Measuring load demand in Lombok could 

improve the quality of the results. Finally, with more research time and a more 

efficient simulating environment more simulations with more time steps can be 

executed, giving a better statistical base for the results. Also, combining the 

theoretical model with field tests could give a good idea on how the system 

functions in a real-life environment. 

 

Recommendations 
Based on this research the following recommendations are made for LomboXnet: 

 

• Significant increase of self consumption using the EVs is possible, this 

project deserves further pursuit. 

• Sophisticated mathematical optimisation as proposed in this paper works 

better than the proposed real-time control algorithms and are the more 

interesting option for a final design. 

• Quality of PV-power predictions do not have a big impact on system 

performance above threshold of about 20% and should therefore not be 

the primary focus of the final system design. 

• Although the potential of increasing self consumption with the proposed 

real-time control algorithms is significantly lower, they are still an 

interesting option if a less complex control system is desired, since self 

consumption can still be improved. 

• Installing extra solar panels is not needed from the perspective of 

increasing self consumption, unless more demand is added to the micro-

grid. 

• Since planning of EV-trips is essential in the proposed control algorithms, 

a survey under future participants on their willingness to plan trips in 

advance is desirable. 

• If further research is desired, choosing between the proposed options 

makes it easier to focus on a particular algorithm and develop a more in-

depth model. 
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Appendix
A.	
  Mathematica	
  code	
  for	
  one	
  24	
  hour	
  simulation	
  with	
  time	
  steps	
  of	
  15	
  minutes

Inputs

pPVTempPS;H* data PV Parkschool *L
pPVTempCGU;H* data PV CGU *L
pvf;H* PV factor *L
pLoadTempPH;H* data load Parkhuis *L
pLoadTempHH;H* data load households *L
nHh;H* number of households *L
wf;H* week factors for load households *L
nEV;H* number of EVs *L
month; H* month for simulation *L
pEVMaxI;H* Max EV charging power *L
pEVMaxO;H* Max EV discharging power *L
pEVCons;H* EV consuming power *L
cEV;H* EV battery capacity *L
socEVMin;H* EV minimum SOC *L
hInEV;H* EV charging efficiency *L
hOutEV;H* EV discharging efficiency *L
maxTrDis;H* EV maximum trip distance *L
minTrDis;H* EV minimum trip distance *L
trPW;H* EV trips per week *L
trST;H* EV trip earliest start time *L
trET;H* EV trip latest end time *L
maxTrDur; H* EV trip maximum duration *L
minTrDur;H* EV trip minimum duration *L

Simulation (per 15 minutes)

simq@pPVTempPS_, pPVTempCGU_, pvf_, pLoadTempPH_, pLoadTempHH_, nHh_, wf_, nEV_, month_, pEVMaxI_,
pEVMaxO_, pEVCons_, cEV_, socEVMin_, hInEV_, hOutEV_, maxTrDis_, minTrDis_, trPW_, trST_, trET_,
maxTrDur_, minTrDur_D :=

ModuleB8year, day, startDatePPVPH, startDatePPVCGU, yearPS, pPVTemp, pLoadTempPH2, pLoadTempPH3,

pLoadPH, pLoadPH2, pLoadTempHH1, pLoadTempHH2, pLoadTempHH3, pLoadHH, pLoadHH2, pPV, pPV2, pLoad,
EVTrips, EVOnOff, eEVReq, eEVTrip, eEVTrip2, NextTr, pEVMaxIn, pEVMaxOut, eEV0, eEVucf, pEVucf,
pEVuc, eEVuc, uEVcc, fEVcc, eEVccf, pEVccf, pEVGridccf, pEVcc, eEVcc, uEVccd, fEVccd, eEVccdf,
pToEVccdf, pEVGridccdf, pFrEVccdf, pEVccd, eEVccd, cons, nc, a, b, c, sol, pEVlp, eEVlp<,

H* DATES *L

day = RandomIntegerB:1,
AbsoluteTime@82012, month + 1<D - AbsoluteTime@82012, month<D

3600 * 24
>F; year = 2012;

startDatePPVPH = AbsoluteTime@82011, 6, 7, 0<D; startDatePPVCGU = AbsoluteTime@82012, 10, 1, 0<D;
yearPS = If@month > 6 »» month ã 6 && day > 6, RandomChoice@82011, 2012<D, 2012D;

H* PV DATA *L
pPVTemp =

IfBmonth ¥ 10,

ListInterpolationB

pvf - 1.8

4
TakeBpPVTempPS, :

1

3600
HAbsoluteTime@8yearPS, month, day<D - startDatePPVPHL + 1,

1

3600
HAbsoluteTime@8yearPS, month, day + 1<D - startDatePPVPHL + 1>F +

pvf - 1.3

4 * 1.8
TakeBpPVTempPS, :

1

3600
HAbsoluteTime@8year, month, day<D - startDatePPVPHL + 1,

1

3600
HAbsoluteTime@8year, month, day + 1<D - startDatePPVPHL + 1>FF,

ListInterpolationB

pvf

4
TakeBpPVTempPS, :

1

3600
HAbsoluteTime@8yearPS, month, day<D - startDatePPVPHL + 1,

1

3600
HAbsoluteTime@8yearPS, month, day + 1<D - startDatePPVPHL + 1>FFF;

pPV = TableBpPVTemp@tD, :t, , 25,
1

4
>F;

H* LOAD DATA *L
H* Parkhuis *L
pLoadTempPH2 =

ListInterpolationB

1

4
Table@pLoadTempPH@@Mod@x, 24, 1D, 1DD + RandomReal@8-1, 1<D pLoadTempPH@@Mod@x, 24, 1D, 2DD, 8x, 25<DF;

pLoadPH = wf@@Ceiling@AbsoluteTime@81900, month, day + 1<D ê H3600 * 24 * 7LDDD

+ ;
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TableBpLoadTempPH2@tD -
2.3

4
, :t, 1, 25,

1

4
>F +

2.3

4
;

H* Households *L
pLoadTempHH1 = Table@RandomChoice@pLoadTempHHD, 8x, nHh<D;
pLoadTempHH2 = Table@Take@pLoadTempHH1@@xDD, 84 * 24 HMod@day - 1, 7, 0DL + 1, 4 * 24 HMod@day - 1, 7, 0D + 1L + 1<D,

8x, nHh<D;
pLoadHH = wf@@Ceiling@AbsoluteTime@81900, month, day + 1<D ê H3600 * 24 * 7LDDD Total@pLoadTempHH2D;

H* for evaluation linear programming HrealisticL *L
pLoadTempHH3 =
Table@Take@pLoadTempHH1@@xDD,

84 * 24 HMod@day - 1 - If@DayName@82008, month, day - 1<D ã Saturday »» DayName@82008, month, day - 1<D ã Monday,
1, -1D, 7, 0DL + 1,

4 * 24
HMod@day - 1 - If@DayName@82008, month, day - 1<D ã Saturday »» DayName@82008, month, day - 1<D ã Monday, 1, -1D,

7, 0D + 1L + 1<D, 8x, nHh<D;
pLoadHH2 = wf@@Ceiling@AbsoluteTime@81900, month, day + 1<D ê H3600 * 24 * 7LDDD Total@pLoadTempHH3D;

pLoad = pLoadPH + pLoadHH;

H* EV trips *L
EVTrips =

TableBIfBRandom@D §
trPW@@iDD

7
,

81, Part@Table@8t, Min@t + RandomInteger@84 minTrDur@@iDD, 4 maxTrDur@@iDD<D, 4 trET@@iDDD<,
8t, 4 trST@@iDD, 4 trET@@iDD - 4 minTrDur@@iDD + 4<D,

RandomInteger@81, 4 trET@@iDD - 4 minTrDur@@iDD - 4 trST@@iDD + 1<DD,

RandomInteger@8minTrDis@@iDD, maxTrDis@@iDD<D<, 80, 80, 0<, 0<F, 8i, nEV<, 8x, 3<F;

EVOnOff@t_, i_D := IfBEVTripsBBi, CeilingB
t

4 * 24
F, 1FF ã 1,

IfBEVTripsBBi, CeilingB
t

4 * 24
F, 2, 1FF § Mod@t, 4 * 24D < EVTripsBBi, CeilingB

t

4 * 24
F, 2, 2FF, 0, 1F, 1F;

eEVTrip@t_, i_D :=

TotalBTableBIfBEVTripsBBi, CeilingB
x

4 µ 24
F, 1FF ã 1 && Mod@x, 4 µ 24D ã EVTripsBBi, CeilingB

x

4 µ 24
F, 2, 1FF,

EVTripsBBi, CeilingB
x

4 µ 24
F, 3FF * pEVCons@@iDD, 0F, 8x, t<FF;

eEVTrip2 = TableBIfBEVTripsBBi, CeilingB
t

4 µ 24
F, 1FF ã 1 && Mod@t, 4 µ 24D ã EVTripsBBi, CeilingB

t

4 µ 24
F, 2, 1FF,

EVTripsBBi, CeilingB
t

4 µ 24
F, 3FF * pEVCons@@iDD, 0F, 8i, nEV<, 8t, 1, 297<F;

NextTr = Table@Module@8n<, For@n = t, eEVTrip2@@i, nDD ã 0 && n < 97 , n++D; 8n - t, eEVTrip2@@i, nDD<D,
8i, nEV<, 8t, 97<D;

eEVReq@t_, i_D :=

MaxBIfBEVTripsBBi, CeilingB
1

4 µ 24
t + MaxBEVTripsBBi, CeilingB

t

4 µ 24
F, 2, 1FF - Mod@t, 4 µ 24D, 0F F, 1FF ã 1 &&

ModBt + EVTripsBBi, CeilingB
t

4 µ 24
F, 2, 1FF - Mod@t, 4 µ 24D , 4 µ 24F ã EVTripsBBi, CeilingB

t

4 µ 24
F, 2, 1FF &&

0 § EVTripsBBi, CeilingB
t

4 µ 24
F, 2, 1FF - Mod@t, 4 µ 24D,

pEVCons@@iDD EVTripsBBi, CeilingB
t

4 µ 24
F, 3FF -

EVTripsBBi, CeilingB
t

4 µ 24
F, 2, 1FF - Mod@t, 4 µ 24D pEVMaxI@@iDD, 0F, 0F + socEVMin@@iDD cEV@@iDD;

pEVMaxIn@t_, i_D := EVOnOff@t, iD pEVMaxI@@iDD;
pEVMaxOut@t_, i_D := EVOnOff@t, iD pEVMaxO@@iDD;
eEV0 = Table@RandomReal@81.1 eEVReq@1, iD, cEV@@iDD<D, 8i, nEV<D;

H* UNCONTROLLED CHARGING *L
H* energy *L
eEVucf@0, i_D := eEV0@@iDD;
eEVucf@t_, i_D := eEVucf@t, iD = eEVucf@t - 1, iD + hInEV@@iDD pEVucf@t, iD;
H* power flow *L

pEVucf@t_, i_D := IfAeEVucf@t - 1, iD + hInEV@@iDD pEVMaxIn@t, iD § cEV@@iDD + eEVTrip@t, iD,

pEVMaxIn@t, iD, IfAeEVucf@t - 1, iD < cEV@@iDD + eEVTrip@t, iD,

HhInEV@@iDDL-1 H cEV@@iDD + eEVTrip@t, iD - eEVucf@t - 1, iDL, 0EE;
H* calculation *L
pEVuc = Table@pEVucf@t, iD, 8i, 1, nEV<, 8t, 97<D;
eEVuc = Table@eEVucf@t, iD - eEVTrip@t, iD, 8i, nEV<, 8t, 97<D;

H* CONTROLLED CHARGING *L
H* priority function *L

uEVcc@t_, i_D := WhichAEVOnOff@t, iD ã 0, 0, eEVccf@t - 1, iD == cEV@@iDD, 0, True,

INextTr@@i, t, 1DD ë MaxANextTr@@i, t, 1DD - Max@NextTr@@i, t, 2DD - eEVccf@t - 1, iD, 0D ê pEVMaxI@@iDD, 10-9EM2E;

fEVcc@t_, i_D := uEVcc@t, iD ë MaxATotal@Table@uEVcc@t, nD, 8n, 1, nEV<DD, nEV 10-9E;

;
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H* energy in EV *L
eEVccf@0, i_D := eEV0@@iDD;
eEVccf@t_, i_D := eEVccf@t, iD = eEVccf@t - 1, iD + pEVccf@t, iD + pEVGridccf@t, iD;
H* power flow *L
pEVccf@t_, i_D := Max@If@pPV@@tDD > pLoad@@tDD,

If@eEVccf@t - 1, iD + hInEV@@iDD Min@fEVcc@t, iD HpPV@@tDD - pLoad@@tDDL, pEVMaxIn@t, iDD §
cEV@@iDD + eEVTrip@t, iD, Min@fEVcc@t, iD HpPV@@tDD - pLoad@@tDDL, pEVMaxIn@t, iDD,

If@eEVccf@t - 1, iD < cEV@@iDD + eEVTrip@t, iD, H cEV@@iDD + eEVTrip@t, iD - eEVccf@t - 1, iDL, 0DD, 0D, 0D;
pEVGridccf@t_, i_D := If@eEVccf@t - 1, iD + pEVccf@t, iD < eEVReq@t + 1, iD + eEVTrip@t, iD,

HeEVReq@t + 1, iD + eEVTrip@t, iD - eEVccf@t - 1, iD - pEVccf@t, iDL, 0D;
H* calculation *L
pEVcc = Table@pEVccf@t, iD + pEVGridccf@t, iD, 8i, nEV<, 8t, 97<D;
eEVcc = Table@eEVccf@t, iD - eEVTrip@t, iD, 8i, nEV<, 8t, 97<D;

H* CONTROLLED CHARGING AND DISCHARGING *L
H* priority function *L

uEVccd@t_, i_D := WhichAEVOnOff@t, iD ã 0, 0, eEVccdf@t - 1, iD == cEV@@iDD, 0, True,

INextTr@@i, t, 1DD ë MaxANextTr@@i, t, 1DD - Max@NextTr@@i, t, 2DD - eEVccdf@t - 1, iD, 0D ê pEVMaxI@@iDD, 10-9EM2E;

fEVccd@t_, i_D := uEVccd@t, iD ë MaxATotal@Table@uEVccd@t, nD, 8n, nEV<DD, nEV 10-9E;
H* energy in EV *L
eEVccdf@0, i_D := eEV0@@iDD;
eEVccdf@t_, i_D := eEVccdf@t, iD = eEVccdf@t - 1, iD + pToEVccdf@t, iD - pFrEVccdf@t, iD + pEVGridccdf@t, iD;
H* power flow *L
pToEVccdf@t_, i_D := Max@If@pPV@@tDD > pLoad@@tDD,

If@eEVccdf@t - 1, iD + hInEV@@iDD Min@fEVccd@t, iD HpPV@@tDD - pLoad@@tDDL, pEVMaxIn@t, iDD §
cEV@@iDD + eEVTrip@t, iD, Min@fEVccd@t, iD HpPV@@tDD - pLoad@@tDDL, pEVMaxIn@t, iDD,

If@eEVccdf@t - 1, iD < cEV@@iDD + eEVTrip@t, iD, H cEV@@iDD + eEVTrip@t, iD - eEVccdf@t - 1, iDL, 0DD, 0D, 0D;
pEVGridccdf@t_, i_D := If@eEVccdf@t - 1, iD + pToEVccdf@t, iD - pFrEVccdf@t, iD < eEVReq@t + 1, iD + eEVTrip@t, iD,

HeEVReq@t + 1, iD + eEVTrip@t, iD - eEVccdf@t - 1, iD - pToEVccdf@t, iD + pFrEVccdf@t, iDL, 0D;
pFrEVccdf@t_, i_D :=

MaxBIfBpPV@@tDD < pLoad@@tDD,

IfBeEVccdf@t - 1, iD - HhOutEV@@iDDL-1 MinB
1 - fEVccd@t, iD

nEV - 1
HpLoad@@tDD - pPV@@tDDL, pEVMaxOut@t, iDF ¥

eEVReq@t, iD + eEVTrip@t, iD, MinB
1 - fEVccd@t, iD

nEV - 1
HpLoad@@tDD - pPV@@tDDL, pEVMaxOut@t, iDF,

IfAeEVccdf@t - 1, iD > eEVReq@t, iD + eEVTrip@t, iD,

HhOutEV@@iDDL-1 H eEVReq@t, iD + eEVTrip@t, iD - eEVccdf@t - 1, iDL, 0EF, 0F, 0F;

H* calculation *L
pEVccd = Table@pToEVccdf@t, iD - pFrEVccdf@t, iD + pEVGridccdf@t, iD, 8i, nEV<, 8t, 97<D;
eEVccd = Table@eEVccdf@t, iD - eEVTrip@t, iD, 8i, nEV<, 8t, 97<D;

H* LINEAR PROGRAMMING *L
H* constraints *L
H* LINEAR PROGRAMMING *L
H* constraints *L
nEV = 2;
cons@t_D :=
Flatten@
8Table@8pEVMaxIn@t, iD, pEVMaxOut@t, iD, cEV@@iDD + eEVTrip@t - 1, iD - eEV0@@iDD,

-HeEVTrip@t - 1, iD - eEV0@@iDDL<, 8i, 1, nEV<D, pPV@@tDD - pLoad@@tDD, pLoad@@tDD - pPV@@tDD<D;
nc = Length@cons@1DD;
H* linear program *L
c@n_D := Flatten@Table@Which@x § n, -100, n < x § 2 n, -100, 2 n < x § 3 n, 1D, 8i, 1, nEV<, 8x, 1, 3 n<DD;
a@n_D := TransposeATableAApplyAWhich, FlattenA9TableA9

x ã 1 + Hi - 1L 4 + nc Ht - 1 - H3 i - 3L nL && H3 i - 3L n < t § H3 i - 2L n, 1,
x ã 2 + Hi - 1L 4 + nc Ht - 1 - H3 i - 2L nL && H3 i - 2L n < t § H3 i - 1L n, 1,
x ã 1 + Hi - 1L 4 + nc Ht - 1 - H3 i - 1L nL && H3 i - 1L n < t § H3 iL n, 1,
Mod@x, ncD ã 3 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 3L nL && H3 i - 3L n < t § H3 i - 2L n, hInEV@@iDD,
Mod@x, ncD ã 4 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 3L nL && H3 i - 3L n < t § H3 i - 2L n, -hInEV@@iDD,
Mod@x, ncD ã 3 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 2L nL && H3 i - 2L n < t § H3 i - 1L n, -HhOutEV@@iDDL-1,
Mod@x, ncD ã 4 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 2L nL && H3 i - 2L n < t § H3 i - 1L n, HhOutEV@@iDDL-1,
Mod@x, ncD ã 3 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 1L nL && H3 i - 1L n < t § H3 iL n, hInEV@@iDD,
Mod@x, ncD ã 4 + Hi - 1L 4 && x > nc Ht - 1 - H3 i - 1L nL && H3 i - 1L n < t § H3 iL n, -hInEV@@iDD,
x ã 4 nEV + 1 + nc Ht - 1 - H3 i - 3L nL && H3 i - 3L n < t § H3 i - 2L n, 1,
x ã 4 nEV + 2 + nc Ht - 1 - H3 i - 2L nL && H3 i - 2L n < t § H3 i - 1L n, 1=,

8i, 1, nEV<E, True, 0=EE, 8t, 1, 3 nEV n<, 8x, 1, nc n<EE;
b@n_D := Flatten@Table@cons@tD, 8t, 1, n<DD;
H* calculation *L
sol = LinearProgramming@c@97D, a@97D, b@97DD;
pEVlp = Table@Table@sol@@t + H3 i - 3L 97DD - sol@@t + H3 i - 2L 97DD + sol@@t + H3 i - 1L 97DD, 8t, 97<D, 8i, nEV<D;
eEVlp =

TableA

TableA

TotalATakeATable@hInEV@@iDD sol@@x + HH3 i - 3LL 97DD, 8x, 97<D +

Table@hInEV@@iDD sol@@x + HH3 i - 1LL 97DD, 8x, 97<D - TableAHhOutEV@@iDDL-1 sol@@x + H3 i - 2L 97DD, 8x, 97<E,

tEE - eEVTrip@t, iD, 8t, 97<E + eEV0@@iDD, 8i, nEV<E;

8pPV, pLoadPH, pLoadHH, pLoadHH2, pEVuc, eEVuc, pEVcc, eEVcc, pEVccd, eEVccd, pEVlp, eEVlp<F
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