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a b s t r a c t

Electric vehicles (EVs) have a high potential in reducing greenhouse gas emissions and are able to
achieve other advantages such as a reduction in local air pollution and increasing energy security.
As a result, EVs are rapidly increasing in popularity, electrifying the transportation sector. This poses
a serious problem for the grid as existing distribution grids were mainly sized in the pre-EV era. In
this paper, a method is proposed to determine the charging demand of future EV fleets in an office
area and determine its flexibility potential. Office charging is studied as it differs from residential
charging and a limited number of studies focused solely on office charging. The study is an empirical
study and is based on analysing real transaction data of 42 EVs charging for over a year at Utrecht
Science Park, Utrecht, the Netherlands, the considered case study. The transaction data allows for an
examination of the impacts of future EV charging demand in an office area. The results based on
a future scenario study show that in 2050, 4 out of 7 studied transformers are overloaded. This is
followed by an analysis on the mitigation of the determined impact. This analysis also determined
the flexibility in EV demand, around 50% of the EV demand can be delayed for more than 8 h. When
this flexibility is used, overloading of 3 out of 4 transformers could be mitigated. This paper shows
that placement of charging stations should be strategically performed, considering the capacity of the
network and taking into account the forecasted load due to EVs charging.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The CO2 emissions from the transportation sector is one of the
iggest contributors to global warming and consequently, anthro-
ogenic climate change [1]. In an effort to mitigate the adverse
mpacts of anthropogenic global warming and climate change,
Vs are promoted worldwide. This is due to their potential to mit-
gate CO2 emissions when the electrical energy used to charge the
V is generated by a renewable energy source (RES). In addition,
or local air quality EVs offer clear benefits, mainly due to zero
ailpipe emissions at street level of pollutants such as NOx and
articulate matter, reducing the local polluted emissions [2]. This
s in particular important for densely populated urban areas [3].

In Europe, the Dutch government has established the ambition
o have all passenger cars be zero-emission by 2050 [4], which
quals to 9.5 million EVs in 2050 in the Netherlands. Not only
he national government, but also local governments have shown
nterest in EVs. An example is the municipality of Utrecht, which
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aims to be a climate neutral city in 2030 and achieve a 30% re-
duction in CO2 emissions by stimulating EVs [5]. The combination
of these policy initiatives and advancements in battery and EV
technology will likely result in an extensive use of EVs in the near
future. The ambition of the Dutch government to stimulate the
uptake of EVs should result in a passenger vehicle fleet which
consists solely of EVs in 2050. However, it remains unclear how
the charging infrastructure will develop in order to supply the EV
charging demand [3].

EVs require the use of batteries with high energy density
and with large electric demand requirements. These batteries
must be charged frequently, often at the level of the low-voltage
(LV) distribution grid. As a result, distribution grid transformers
that were sized before EV integration may become overloaded
and might be unreliable to support a large deployment of EVs.
Prolonged overloading of a distribution grid transformer may lead
to failure in supplying power. In this context, several studies
have looked into the other impacts on parameters of the dis-
tribution network’s system design and operation such as; high
current demand [6], power flows [6], load unbalance [7], higher
energy losses [8], voltage profile [9], harmonics [10] and peak
load [11]. The combination of all these impacts might require to
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Nomenclature

Indices

q Index of transaction in dataset
j Index of EV in dataset

Symbols

tqplug−in The plug-in time for transaction q [-]
tqplug−out The plug-out time for t transaction q [-]
Eq
req The total charged energy during each transaction q [kwh]

HDUR,max The maximum connection time of an EV j that occurs in the dataset [h]
Hplug−in,max The maximum plug-in hour of an EV j that occurs in the dataset [-]
NEV,2050 The estimated EV fleet in 2050 [-]
Hq

plug−in Plug-in hour of the day for transaction q [-]
Tqconnect The connection time for transaction q [h]
Pmax Maximum power charged by the EV [kW]
Pq
max Maximum charging power during transaction q [kW]

TqDUR,charge The duration for which the EV is charged during transaction q [h]
tqend−charge The time at which the EV has completed the charging process for transaction q [-]
Cparking Parking area capacity [-]
S Apparent power [kVA]
P Active power [kW]
Rpeak,transf. Relative peak load [-]
Ptransf. Power experienced by transformer [kW]
Ctransf. Rated capacity of a transformer kW]
Pq
av Average charging power during transaction q [kW]

fdaily,av Average daily transaction frequency of an EV [EV/day]
Edaily,av Average daily charged energy for an EV [kWh/EV/day]
NEV,groups Number of EV groups assigned to a transformer [-]
NCS Number of charging stations [-]
1Tflex Available flexibility [h]

Acronyms

EV Electric vehicle
RES Renewable energy resources
LV Low-voltage
PV Photovoltaics
BEV Battery electric vehicle
MV Medium-voltage
CS Charging station
EVID A unique anonymous identity for each EV j that occurs in the dataset
PF Power factor
USP Utrecht Science Park
P&R Park&Ride
ZEV Zero-emission vehicle
FCEV Fuel cell electric vehicle
V2G Vehicle-to-grid
DSO Distribution system operator
MaaS Mobility as a service
reinforce local distribution grids in some locations for an effective
integration of EVs.

Other work that analysed the impact of EVs on the distribution
rid are [11,12]. This paper differs from these works on some
spects. While Ramanujam et al. [12] examines a similar case,
heir simulations are driven by synthetic estimates, rather than
eal-life empirical data, therefore being a less accurate characteri-
ation of real-life conditions. This paper uses a real EV transaction
ata set which yields more realistic results. Verzijlbergh et al. [11]
2

examines the distribution grid impacts using charging profiles
based on real life driving data, as done in this paper. However,
the study is mainly applicable to the system level, rather than for
individual network components, as achieved in this paper.

The academic field has proposed several intelligent or smart
EV charging management methods to handle the potential prob-
lems described. Ayyadi et al. [13] recommended tariff based
charging in a residential area. Di Silvestre et al. [14] used an opti-
misation approach to devise efficient management strategies for
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EV parking lots. A study by Sehar et al. [15] showed the impacts of
plug-in EVs on a retail’s building’s peak demand energy consump-
tion and presented the ability of renewable energy resources
(RES) and demand management options to reduce their impacts.
Sehar et al. [15] concluded that 38% of the EV load demand
could be absorbed by demand management in combination with
photovoltaics (PV). Huls et al. [7] proposed coordinated charging
strategies for plug-in EVs to facilitate a flexible charging process
that may be delayed in time, ensuring that the user’s charging
requirements does not suffer from the utilized flexibility. Pirouzi
et al. [16] proposed a model for power management in a smart
distribution network in which the objective is to minimise the
costs of energy and improve the voltage profile. The general
conclusion from these studies is that the existing distribution
grid should be able to accommodate a substantial penetration
level of EVs if the majority of the charging demand is controlled.
Uncontrolled charging of EVs coinciding with the peak hours of
residential demand is expected to lead to component overloading
and excessive voltage deviations [17].

Previous studies have been focused on the flexibility of EV
emand and controlled charging [18–21]. Here, the flexibility of
V demand is defined as the difference between the connection
uration and the charging duration. The studies [18–21] looked
t residential charging, instead of office charging, as done in this
aper. Only a limited number of studies have investigated the
V charging demand in office areas. In an office area, the EV
harging demand is likely to differ from a residential area. In
ase of uncontrolled charging, the EV demand peaks are likely
o coincide with peak hours of economic activity as employees
lug-in around the same time, for example at the beginning of
he work day. Furthermore, the EV charging demand is likely to be
oncentrated in the same areas, i.e. parking areas. As the existing
istribution network is rated to deliver electricity depending
n historical electricity demand [17], increased EV demand in
hese areas might introduce grid congestion. Grid congestion can
e avoided by redistribution of the EV charging demand over
he period that the EV is connected to the charging station,
.g. smart charging. Furthermore, smart charging can provide
ncillary services, minimise charging costs and optimal utilisation
f renewable energy generation [22].
Prior work likewise focused on EV session data gathering and

nalysis. Sadeghianpourhamami et al. [23] provided a compre-
ensive analysis and quantification measures of flexibility char-
cteristics using actual data from 390,000 EV charging sessions in
he Netherlands. A coordinated charging optimisation algorithm
s developed to assess the flexibility exploitation for load flatten-
ng and load balancing with renewable generation. The concept
f the work in [23] is similar to our paper. It likewise focuses
n flexibility analysis and quantification using real transaction
ata from The Netherlands. It is related to the methods and the
esults of our paper. However, there is no grid impact assessment
r simulation of future EV charging transactions. Furthermore,
ffice areas are not distinguished from residential areas. Flamini
t al. [24] analysed the charging variables, such as connection
ime, charging duration, and charged energy, using an actual
ataset of 400,000 EV charging transactions in the Netherlands, in
rder to understand the EV drivers charging behaviour. A statisti-
al characterisation methodology was developed to represent the
ultimodal probability distributions of the charging variables.
he work in [24] is related to our study as the authors calculate
nd analyse similar metrics such as the connection time, plug-
n and plug-out time and the EV power demand, however they
id not assess the future EV demand and the possible mitigation
y EV demand flexibility or quantify the transformer peak load.
urthermore, office areas are not distinguished from residential
reas and no clear results on the flexibility potential are presented
s in our paper.
3

The primary goal of our study is to determine the possible
increase in load due to EVs charging in an office area, anal-
yse the impact on the load experienced by existing distribution
transformers and identify when the grid transformers become
overloaded. The study is empirical and is based on analysing real
transaction data, in comparison to some of the studies mentioned
before. An additional goal is to evaluate the time-dependent
flexibility of the EV demand and the mitigation of the load. The
mitigation of the load is done by applying controlled charging.
In the controlled charging scenario, the load is spread out over
the connection time of the EV based on a heuristic approach.
In contrast to the papers that studied residential charging, this
paper focuses on office charging. The impact of an office fleet
consisting entirely out of battery electric vehicle (BEVs) charging
on the distribution network of an office area is analysed, which
is in line with the Dutch government’s ambition and goals for
2050. The impact and time-dependent flexibility is determined
at the MV/LV transformer level and a mitigation strategy is de-
fined. The proposed methods are generic and can be applied to
assess the grid impact of future EV charging demand in different
areas, whereas the case study demonstrates their application. The
methods are replicable and can be applied to other case studies
likewise. The conclusions are mainly specific for the case study,
but we conclude on a general note that the placement of CS
should be strategically performed looking at the capacity of the
network and taking into account the forecasted load due to EVs
charging.

The contribution of this paper can be summarised as follows:

• A method is proposed for determining the grid impact of
future EV charging demand.

• The time-dependent flexibility is determined and a mitiga-
tion strategy is proposed.

• An empirical study for grid impact assessment, flexibility
determination and mitigation strategy for a case study ad-
dressing an office area in The Netherlands.

The paper is structured as follows. In Section 2 the methods
are described. The proposed methods are applied to a case study,
which is described together with the data inputs in Section 3.
The simulation results, impact calculation results and flexibility
results are presented in Section 4. The paper is concluded with
discussion in Section 5 and concluding remarks in Section 6.

2. Methodology

This section describes the methods used to create power de-
mand profiles of simulated EVs and determination of EV flexibil-
ity. To give a representation of real-life EV charging behaviour,
this method makes use of a dataset including real EV charge
transaction data. Herein, first the method used to create power
demand profiles of simulated EVs is described in Section 2.2. In
Section 2.3 the method for determining the impact on MV/LV
transformers is explained. Section 2.4 will provide the method for
a flexibility assessment and a proposed mitigation.

In the proposed method, for each EV transaction q, the follow-
ing data is required:
tqplug−in: the plug-in time for transaction q.
q
plug−out : the plug-out time for transaction q.
q
req [kWh]: the total charged energy during each transaction q.
VID: A unique anonymous identity for each EV j that occurs in
he dataset.
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2.1. EV fleet size

As this study looks into the charging demand in an office
rea, two EV categories are distinguished, namely a company
V and a commuting EV. The company EV is shared among the
mployees in the office area. The commuting EV is owned or
eased privately by employees. An EV is assumed to be a company
V when the maximum duration of its connection to a charging
tation (CS) has been more than 24 h (HDUR,max > 24 h) and it has
tarted the charging process at least once in the evening hours
Hplug-in,max > 16:00), otherwise it is considered a commuting EV.
he categorisation is illustrated in Fig. 1.

Fig. 1. Categorisation of EVs in the logged dataset.

To study the impact of an EV fleet charging in the office area
ssumptions regarding the size and penetration rate are made, as
ollows:

• The company vehicle is considered a BEV [25].
• All passenger vehicles are assumed to be BEVs, based on the

Dutch ambition for 2050 [4]. Therefore, all EVs should be
either a company BEV or a commuting BEV.

• The share of company EVs on the EV fleet is determined at
28%, based on a linear interpolation on data from [26]. The
corresponding share of commuting BEVs is 72% for the year
2050.

• Evaluating the modal split and the number of daily visi-
tors [27], 9699 daily used passenger vehicles are estimated
in the present day.

• The growth of the passenger vehicle fleet in the studied area
is assumed to be equal to that of the Dutch passenger vehicle
fleet (0.6%) [28].

• The EV fleet at the investigated area is therefore sized at
around 11,724 EVs in 2050 (NEV ,2050).

The charging profile of an EV depends on the category of
he EV, the power at which the EV charges and the frequency
t which it needs to charge. The EV dataset is analysed and
istograms of the plug-in hour of the day (Hplug-in [h]), the total
harged energy (Ereq [kWh]) and the connection time (Tconnect [h])
re created, following the method described in [20].

.2. EV charging profiles stimulation

For the method of the simulation of the EV charging profiles
e adopt the method by Gerritsma et al. [20]. In [20], a trans-
ction specific charging power dataset was used to generate EV
uture charging demand profiles. However, in the data used in
ur study, transaction specific charging power was not available.
herefore we assume that the EV charges at a maximum charging
ower, PMax, of 22 kW, based on the nominal power of the logged
Ss, see Section 3.
The adaptation of the method by [20] for the charging profile

imulation is as follows: For each transaction, an EV number is
ssigned, depending on the charge frequency. As each EV has
een assigned a category in representing the EV fleet, the volume
4

the EV is charged with during transaction q is randomly picked
from a list which contains the volumes and certain probabilities
for that EV category. Per transaction hq

plug−in is assigned, based
on the probability an EV of a certain category plugs-in at that
hour. The exact simulated plug-in time, tqplug−in, is derived by
assigning a number of minutes within hq

plug−in. With the number
f minutes randomly chosen. It is assumed that all EVs in the sim-
lation charge uncontrolled at power rate Pq

Max, starting at tqplug−in
and ending when Eq

req of that specific transaction is reached.
The duration the EV is connected to the CS, Tconnect , is selected
randomly based on the EV’s category and the probability of the
connected hours for that EV category. The dependency of Eq

req and
∆T q

connect are respected by randomly choosing Tconnect based on the
simulated Ereq. This means that a transaction with a large required
energy, has a high probability of a longer connection time. The
plug-out time, tqplug−out is then determined by summing tqplug−in
with T q

connect . The duration for which the EV is getting charged
is determined by dividing the volume charged by the power at
which it charges as expressed in Eq. (1). The time at which the EV
has completed the charging process, tqend−charge, is then determined
by summing tqplug−in with T q

DUR,charge.

T q
DUR,charge = Eq

req/P
q
max (1)

2.3. Impact of charging demand on distribution grid transformers

In this section a grid impact calculation provides insight into
the effect of EVs charging on distribution transformers. Aggre-
gation of EV demand profiles is applied in order to reduce the
computational burden. The charging profiles of the EV fleet are
clustered into 20 groups, as done by [29], which makes it com-
putationally feasible. The number of clustered groups was chosen
in a heuristic manner. The logic behind this choice is that larger
number of groups would result in longer computation times,
whereas a smaller number of groups would make the number
of CS too large to spread them out over the parking areas of
the studied area. Then the MV/LV transformers on which the
charging load is expected are selected based on the parking areas,
as follows:

1. The parking areas and their parking capacities in the area
are defined;

2. Parking areas without sufficient parking capacity (Cparking )
for at least one group are excluded;

3. Parking areas without a MV/LV transformer close by are
excluded.

For this method, the base load of the transformers in the studied
area is necessary. The extra load due to EV charging demand is
then added on top of the base load.

The load of a transformer is characterised by its seasonal vari-
ation, with two seasonal demand periods — winter and summer.
Therefore, one week in each seasonal period is analysed. Note
that since the rated capacity of a transformer is apparent power
(S) [kVA], in the analysis an average power factor (PF) is used to
convert the apparent power to active power (P) [kW], according
to Eq. (2). Here, 0 ≤ PF ≤ 1 is the power factor. For the analysis,
the average power factor of 0.9 and 0.95 is used for summer and
winter, respectively, which represents the average power factor
in these seasons [30]. The variable power factor is attributed to
the temperature difference between summer and winter which
influence the power quality of the transformer.

P = S ∗ PF (2)

The relative peak load of the transformers are studied. As a
transformer allows to be overloaded for some time, the overload
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criterion is 1.25, and the critically overload criterion considered is
1.5, as considered in [30]. The relative peak load (Rpeak,transf .) ex-
erienced by a transformer is determined by dividing the power
he transformer experiences (Ptransf .) by the rated capacity of the
ransformer (Ctransf .), according to Eq. (3).

peak,load,transf . = Ptransf ./Ctransf . (3)

To allocate which part of the peak load is due to the integra-
tion of EVs, the peak load experienced by the transformers is also
determined for a scenario without EV. The scenario without EV
does not include charging profiles of EVs, solely an annual load
growth of 1.5% is considered in this scenario.

2.4. Mitigation of impact by demand flexibility

In Section 2.3 the impact of uncontrolled charging of a ve-
hicle fleet consisting solely out of BEVs on MV/LV transform-
ers is investigated. This section describes the analysis of the
time-dependent flexibility of EV demand and the method for
controlled slow charging of EVs. The method to generate the
time-dependent flexibility of EV demand is obtained from Ger-
ritsma et al. [20]. The results in [20] confirm the feasibility of
congestion management using smart charging within flexibility
constraints in residential areas. The method used in this paper
provides an answer to the available flexibility of EV demand on
MV/LV transformers in office areas.

In Section 2.2 charging profiles of uncontrolled charging are
generated. With uncontrolled charging it is assumed that an EV is
charged at Pq

max when that EV is plugged in. However, the charging
power might be slowed down to an average charging power Pq

av
[kW], i.e., controlled charging. In this study the following ap-
proach has been followed for determining the controlled charging
scenario: with controlled charging it is assumed that Eq

req [kWh]
for the transaction q has to be met by the time the EV is plugged-
out. We assume that the charging session is spread out over the
whole period the EV is plugged-in. This charging method results
in a different simulated charging power profile because the EV
charges with a lower charge rate, Pq

av , over the connection time,
∆T q

connect . Per transaction, Pq
av is determined by using Eq. (4). The

before-mentioned simulation steps are carried out for each EV j.
q
av = Eq

req/∆T q
connect (4)

3. Distribution network case study and data collection

In this paper the distribution grid of Utrecht Science Park (USP)
has been considered as a case study. This area is located on the
east side of the city of Utrecht, the Netherlands. This is an area
for education, research, entrepreneurship and healthcare. USP
includes 108 companies, 2500 student houses, 51,000 students
and approximately 26,000 employees [27]. This area is considered
an office area and therefore this study looks into office charging
only, while residential charging is excluded.

Since this study seeks to understand the impact of EVs, a
transaction dataset of actual EV charging is used. The transaction
dataset consists of the charge data of EVs at 4 logged CSs in the
studied area. Last Mile Solutions is the supplier of the CSs and
keeps track of the transactions that occur at the CSs. The CSs were
logged from the January 2, 2017 up to and including February 28,
2019. Each CS is equipped with two three-phase charging points
at 32 A, with connection in a 230 V network, hence each charging
point can provide a three-phase charging power of 22 kW (Pmax).
The dataset includes detailed information per transaction such as
the plug-in time, the plug-out time, the total charged energy and
an anonymous ID for each EV.

Data cleaning steps included removing transactions where no

EV ID was logged. Furthermore, the dataset was filtered so that

5

Fig. 2. Representation of the distribution network and locations of CSs at USP.

Table 1
Key results of EVs charging at CSs at Utrecht Science Park, based on actual
measurements within the period from February 28, 2018 to February 28, 2019.
Category No. of EVs fdaily,av Edaily,av

[#] [EV/day] [kWh/EV/day]

Company EV 4 0.412 4.874
Commuting EV 18 0.027 0.548
All EVs 42 0.053 0.708

it covers a one-year period, the start date was February 28, 2018
and the end date February 28, 2019. This resulted in a dataset of
807 transactions.

At the time of writing this paper, there are 21 CSs installed
at the 7 locations shown in Fig. 2, of which 4 were logged. The
logged CSs are displayed with a red dot in Fig. 2.

4. Results

4.1. Results of measured EV data set

The key results determined from the measured data set are
shown in Table 1. As can be observed by the daily energy demand,
company EVs have a high impact on the aggregated electricity
demand in comparison to the other EV categories. The company
EVs have the highest charge frequency, with an average charge
frequency of 0.412 [EV/day].

The distribution of several parameters was analysed for the
different identified categories. Fig. 3 shows histograms of the
four parameters analysed. The first row in the figure shows the
plug-in hour per EV category. It illustrates that company EVs
plug-in mostly around 10:00, commuting EVs plug-in a bit earlier
with a peak between 7:00 and 8:00. The second row of graphs
shows the distribution of the required energy for EVs in different
categories. The distributions for company EVs and commuting
EVs are quite similar. Lastly, the third row in the figure shows
the connection duration, Tconnect . With company EVs having the
longest connection duration, followed by commuting EVs.

4.2. Simulation of EV charging profile

In this section, the results of the charging profile simulation of
the EV fleet per scenario are described. Based on the daily used
passenger vehicles in 2019 and an average growth rate of 0.6%,
11,724 EVs are expected in the investigated area in 2050 [28].
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Fig. 3. Histograms of transaction parameters and the distribution of the charge frequency per category, of charging transactions of 42 EVs charging at 4 CSs in the
period of the logged year, February 28, 2018 to February 28, 2019.
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Fig. 4. Average daily charging profile for simulated EVs in the investigated area.

Therefore, 3347 company EVs and 8377 commuting EVs are sim-
ulated. The average load profile of 11,724 EVs charging at the
investigated area is shown in Fig. 4. The peak power expected the
simulated year is 6094 kW and the aggregated energy demand
over the year is 11,294,701 kWh. In the period of the simulated
year, a maximum of 1713 EVs are connected at once. In order
to accommodate for the uncontrolled charging of the simulated
number of EVs, 857 CSs should be available at the investigated
area.
6

Table 2
Key specifications of the CS locations.
Parking area number and location Cparking NEVgroups NCS Ctransf . [MVA]

1. P&R Utrecht Science Park 2000 8 379 0.4
2. Parking area P10 ‘‘Uppsalalaan’’ 125 1 62 0.63
3. Parking area P9 ‘‘Budapestlaan’’ 135 1 61 0.63
4. Parking area ‘‘Padualaan’’ 419 2 98 0.63
5. Parking garage P8 ‘‘Cambridgelaan’’ 504 3 132 1.25
6. Parking area ‘‘Sorbonnelaan’’ 613 3 136 0.63
7. Parking area P7 ‘‘Jenalaan’’ 236 2 111 0.63

4.3. Impact of charging demand on MV/LV transformers

Table 2 describes the main specifications of the determined
possible locations for CSs including the parking area capacity
(Cparking ) the number of groups assigned to the transformer
NEVgroups), the number of CSs (NCS) and the transformer capacity
Ctransf .). The numbers in the table correspond to the numbers in
ig. 2.
Table 3 represents the expected MV/LV transformer peak load,

ogether with the without EV-scenario, which just includes the
nnual load growth of 1.5%. As mentioned in Section 2.3, the over-
oad criterion is 1.25. The overload criterion reflects the instan-
aneous peak value, which can be higher than the rated capacity.
s we can see from the table, the transformer at Park&Ride (P&R)
SP and the transformer at Sorbonnelaan street are critically
verloaded, as their relative peak load is higher than the critically
verload criterion. The transformers at P7 Jenalaan street and
adualaan street are overloaded. None of the transformers are
verloaded in the without EV-scenario.
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Fig. 5. Available flexibility of aggregated EV demand at the transformer in different office areas.
able 3
xpected relative MV/LV transformer peak load [–].
Parking location EV Without EV

P&R Utrecht Science Park 6.30 0.52
Parking area P10 ‘‘Uppsalalaan’’ 0.94 0.68
Parking area P9 ‘‘Budapestlaan’’ 0.86 0.27
Parking area ‘‘Padualaan’’ 1.39 0.33
Parking area P8 ‘‘Cambridgelaan’’ 0.80 0.05
Parking area ‘‘Sorbonnelaan’’ 1.75 0.31
Parking area P7 ‘‘Jenalaan’’ 1.27 0.33

4.4. Flexibility of EV demand

The time-dependent flexibility is determined for the expected
verloaded transformers. To make a clear representation, the
lexibility is obtained for one day in the simulated period. Fig. 5
emonstrates the charging power for the transformers at P&R
SP, Padualaan, Sorbonnelaan and Jenalaan streets, respectively.
he different colours indicate the potential ∆Tflex [h] for different
arts of the average measured aggregated EV demand starting at
ach time of the day. As mentioned earlier, ∆Tflex is defined as
he number of hours over which the demand could be shifted
ithin the connection duration of an EV. The figures indicate the
pportunities to shift the EV energy demand over time, i.e., 52%
f the demand at Padualaan street can be delayed for more than
h and 9% of the demand for more than 24 h. For Jenalaan street,
6% and 15% of the demand can be delayed for more than 8 and
4 h, respectively. For Sorbonnelaan street this is 52% and 16%,
espectively. For P&R USP this is 49% and 14%, respectively.

For the overloaded transformers, the load experienced by the
ransformer is determined when EVs use controlled charging (in
his case Eq

req for the transaction is met when the EV is plugged-
out). As stated in Section 4.3, expected peak power at the studied
area is 6094 kW under uncontrolled charging. By applying slow
charging, the peak power is reduced to 3297 kW, a reduction of

54.1%. Furthermore, by applying slow charging, overloading of 3

7

Fig. 6. Load during a week at Transformer Padualaan under controlled charging.

out of the 4 transformers can be mitigated. Critical overloading is
still experienced by the transformer at P&R USP.

An example of the load experienced by the otherwise over-
loaded transformer when controlled charging is put in place is
displayed in Fig. 6. This example shows that overloading can be
mitigated when controlled charging is applied.

5. Discussion

In this section, the methods and results are discussed. First
of all, the development of the future EV fleet is uncertain. For
instance, the growing use of vehicle sharing may take over from
traditional use of the vehicles in the office area. Fully autonomous
vehicles may drive this trend further, but these modal shifts have
not been analysed in our model. It is expected that most of these
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vehicles are electric [25] and therefore increase the EV driving
range. Furthermore, off-peak transport is likely to continue to
occur during the night. This could mean that consequently, the
available flexibility in the EV demand might decrease, especially
during daytime. The increased daily distances travelled per car
will imply reduced parking time and therefore less flexibility
in EV demand and less energy storage available for grid ser-
vices and/or PV self-consumption. The implications for the EV
demand flexibility, which may decrease in a future system based
on shared and autonomous vehicles, is recommended to be fur-
ther studied in detail. Furthermore, the Dutch government has
set goals based on the term Zero-Emission Vehicles (ZEV). This
term also includes fuel cell electric vehicles (FCEVs). However,
the BEV will most likely continue to dominate in the short- to
medium-term future ZEV fleet as the FCEV technology is not yet
as developed as the EV technology, and it is presumed that the
lowest cost technology will be the dominant one in the near
future [25,31]. In addition, the authors in [31] concluded that
less energy reduction can be obtained for a ZEV fleet if replaced
by FCEVs rather than a ZEV fleet consisting of EVs, making it
less attractive for policy makers to invest in this technology.
For the vehicle fleet size it was assumed that the modal split
of commuting employees remains constant. However, the modal
split is likely to change as Utrecht region is committed to facilitate
the growth of USP by investing in public transport and bicycle
accessibility [5]. A recommendation for further research is to use
the simulation model and vary the modal split of employees
commuting to determine the peak power demand and flexibility
potential.

Second, this study has not looked into the impact of increasing
V penetration rates in the investigated area. Energy production
y PV is likely to grow in the investigated area as PV will play
n important role in the future energy supply; it is expected to
upply 25% to 30% of the energy demand in the Netherlands in
050 [32]. This means that some transformers might experience
ess load due to local PV power generation. Installing PV systems
ould supplement EVs charging in the office area. This is due
o the fact that, in contrast to residential charging of EVs [20],
Vs in the office area charge during the day, with the charging
eak around 10:00. Either, optimally placing the PV modules so
hat maximum generation is in the morning or smart charging
f EVs would increase PV self-consumption. Results from this
tudy show that the flexibility of the morning peak demand,
ould be shifted so that the EVs get charged during the PV peak
eneration a few hours later. This is in contrast to residential
harging, where the evening EV demand holds the most flexibility
otential [20]. This means that more time-dependent flexibility
ould be necessary in case of residential charging as to shift
he evening peak until the following mid-day. For office charging
he flexibility in EV demand for the morning peak could be less
s the peak would only needed to be shifted by a few hours.
his means that EV-based smart charging can be a crucial factor
o scale up variable PV power generation. Gerritsma et al. [20]
ddressed the fact that for smart charging, the EV users would
ave to actively participate and willingly share information. This
s likewise the case for office charging. However, the controlled
harging of EVs in an office area could be easier compared to a
esidential area. In the office area, especially the commuting EVs
re to some extent restricted to office hours, therefore it is easier
o control when the EV charges and when the charging process
as to be finished (e.g. at the end of the work-day). Regarding
he company EVs, which are operated by the university and local
usinesses, controlling the charging process can be done by EV
leet management. EV fleet management is already commercially
onducted. In a residential area, charging behaviour is somewhat
ore unpredictable and it is therefore more difficult to control

he charging process of large numbers of EVs.
8

Lastly, regarding the method for the creation of charging pro-
files, prior work has also analysed the impact of EVs on the
distribution grid [11,12]. However, as discussed in Section 1, this
paper differs from these works as we have made use of a real
EV transaction dataset which yields more realistic results. This
paper adopted a method by Gerritsma et al. [20] for the creation
of charging profiles and to determine the flexibility of EV demand,
but expands on this work by conducting an in-depth analysis
of existing transformers in an office area and quantifies their
different load profiles.

In the simulation for the creation of charging profiles weekend
days were not taken into account. This is due to the fact that in
the original transaction data, no transactions were identified on
the weekend days. This makes sense as the investigated area is
in an office area with low economic activity in the weekends.
Yet, as the city of Utrecht is to expand, possibly vehicles from
outside of the office area will start to charge on weekend days in
this area in the future. In addition, residential buildings rising in
the area will likewise change the charging behaviour of the EV
fleet. The EV demand in the weekend is more likely to be spread
throughout the day as these vehicles are not restricted to office
hours. Therefore a lower peak demand than on weekend days can
be expected, making the analysis on weekdays in this study a
nonetheless relevant case.

The number of EVs charging simultaneously is left uncon-
strained in the simulation. This means that the number of avail-
able CSs is driven by the EV demand and the connection duration.
To determine the number of necessary CSs, the maximum num-
ber of EVs connected simultaneously was taken into account.
However, this maximum number of EVs connected may occur
once a year. Therefore in real-life conditions the number of CSs
available could be lower. In case of less available CSs in the area,
lower charging peaks can be expected. However, with more avail-
able CSs, and therefore increasing EV connection periods, more
flexibility in EV demand can be expected. Alternately the actual
charging time of an EV could be used to determine the number of
CSs required. It would be interesting to determine the maximum
number of EVs charging simultaneously. The way EVs are charged
in the future may look different from the current situation. A
mechanism could be put in place that automatically disconnects
an EV when its fully charged and connects the following EV. This
is however speculative and not in place as of writing this paper.

As the original transaction data did not include the transaction
specific charging power, a fixed charging power was set to 22
kW for EVs, based on the nominal power of the logged CSs. This
is not a rare assumption as a fixed charging power was set by
several other studies such as [11,20,33,34]. The charging power
might actually be lower than the maximum charging power, but
no comparison could be made with the original transaction data.
This is due to the fact that in the EV transaction dataset used,
no charging power was logged. If the original transaction data
actually included transaction specific charging power, a more
accurate charging profile could be created. In case that EVs ac-
tually charge with a lower power, the EV peak power and the
flexibility in EV demand would be overestimated. However, in the
future the charging power of EVs is likely to be driven to higher
power rates [35]. A recommendation for further research is to
use the simulation model with varying the charging power when
simulating the charging profiles for determining the peak power
demand and flexibility potential.

In Section 4.4, we showed what would happen if use is made
of the time dependent flexibility in EV demand. Solely by spread-
ing out the EV demand over the connection period, the peak load
of EV demand in the studied area was reduced by 54%. In this
case study, overloading could be mitigated for 3 out of the 4

overloaded transformers. The mitigation of the charging load is
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done by applying controlled charging. In the controlled charging
scenario, the load is spread out heuristically over the connection
time of the EV. However, this might not be the optimal mitigation
strategy. An optimisation approach should be performed in order
to determine the lowest peak power possible in the studied area.
Furthermore, other smart charging strategies such as V2G, tariff-
based charging and load shifting and their mitigation on grid
impact are recommended to be explored for this case study in
future research.

The proposed methods in this paper are applied for the case
tudy the USP, however these methods are replicable and can
herefore be applied to other case studies likewise. For example,
city or a country assessment can be performed to subsequently
etermine the bottlenecks in the distribution grid and obtain the
lexibility of EV demand in those areas. Such an assessment is
aluable as it could be input to the distribution system operators
DSO) investment decision making in grid reinforcement. For
SOs to achieve an effective and timely grid reinforcement, it is
ey to know which locations are expected to receive the highest
oad due to EV charging and which part of the EV demand can-
ot be decreased by controlled charging. Other stakeholders can
enefit from the proposed methods. For example, municipalities
an apply the methods proposed in this paper to strategically
lace CSs, looking at the capacity of the network and taking into
ccount the forecasted energy demand due to EVs charging.

. Conclusion

This paper presents a methodology to determine the impact
f an office car fleet consisting entirely out of BEVs charging
t the distribution network of an office area. Furthermore, the
ime-dependent flexibility is determined at the MV/LV trans-
ormer level and a mitigation strategy is proposed. The proposed
ethodology is generic in the sense that it can be applied to
ssess the grid impact of future EV charging demand in different
reas, whereas the investigated case study elucidates its applica-
ion. A scenario was created for the size of the future EV fleet
t USP that complies with the Dutch government’s ambition and
oals for the Dutch passenger fleet. Then the charging profiles of
he simulated EV fleet were created. The EV fleet in the studied
rea is estimated at 11,724 in 2050. This EV fleet may result in a
eak power demand of about 6 MW.
The simulated average daily charging profile exhibits a peak

emand at around 10:00 and a lower peak later in the afternoon,
round 16:00. In order to accommodate the expected EV fleet
harging, the number of CSs necessary at the studied area are 857
n 2050. Simulations were carried out to determine the impact
f EV load on the MV/LV transformers in two scenarios (2050
nd without EV). The results showed that no overloading occurs
n the scenario without EV. In the 2050 scenario, 4 out of 7
nvestigated transformers become overloaded and with no miti-
ation strategy put in place, these transformers are to be replaced
ith transformers of a higher nominal capacity. The mitigation
f the grid impact is elaborated upon. It was also shown that
art of the peak demand experienced at certain transformers can
e delayed. This flexibility in EV demand is elaborated on by
etermining the charging profiles of the simulated EV fleet when
ontrolled slow charging is applied. By applying slow charging,
he charging peak can be reduced by 54.1%. Overloading of 3 out
f the 4 transformers can be mitigated. Critical overloading is still
xperienced by the transformer at P&R USP, this is due to the fact
hat the existing transformer has a small nominal capacity (400
VA) and that most EVs are expected to charge at this location
ecause of the high parking capacity. The current small nominal
apacity gives the impression that the transformer was installed
t the P&R without taking into account the increasing load due
9

to EV charging. When controlled slow charging is applied, the
transformer experiences a peak demand of around 1.2 MW. In
this case, the nominal capacity should at least be about 1.2 MW,
three times the current nominal capacity. Further research into
other mitigation strategies can provide a better view into the
transformer capacity requirements for this case study.

Overall, the results are representative for other office areas, in
the sense of timing of the economic activity and work schedules
in an office environment. However, it is important to note that the
results are largely based on (a) dataset of 807 transactions over
one year, which is rather limiting due to the early adoption of EVs
in the studied area, and (b) it is based on assumptions about the
future EV fleet and share between company and commuting EVs,
which might change in the future as new Mobility as a Service
(MaaS) business models are introduced. Still, all assumptions are
supported by statistical data and/or the results of other scholars,
and are presented in a transparent manner in support of future
research.

In conclusion, placement of CS should be strategically per-
formed, looking at the capacity of the network and taking into
account the forecasted load due to EVs charging. Placement of
CSs where grid capacity is available and controlling the charging
process could avoid grid congestion and subsequently postpone
and or avoid grid reinforcement. This consequently could mean
a decrease in the costs of energy and an effective integration of
EVs in office areas.
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